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Preface

Recently, we have seen that nano-structured materials demonstrate remarkable ad-
vantages over conventional ones, particularly in mechanical behaviors. This will have
a great impact on new technology and engineering in the new millennium. In accord-
ance with this need, IUTAM decided to hold a symposium to discuss the prospect of
the wonderful mechanical behaviors of nanostructured materials and their relevant
micro-mechanics, to encourage the mechanics community to explore the frontier of
science and technology. The aim of the symposium was to provide such a forum to all
experts in both mechanics and material sciences worldwide, to have an opportunity to
exchange their research achievements and views in understanding these mechanical
behaviors, exploring their applications, as well as enhancing their property designs
of nanostrucutred materials.

The IUTAM Symposium on Mechanical Behavior and Micro-mechanics of
Nanostructured Materials was held successfully in Beijing, China, June 27–30,
2005. Thirty participants with different research backgrounds including mechanics,
materials sciences, physics, etc. from Australia, France, Germany, Japan, Singapore,
UK and USA and China presented their contributions on various aspects closely re-
lated to the subjects, displaying wide research direction and progress.

In this proceedings volume, these contributions are collected in six parts:

(1) Mechanical behaviors of nanocrystal materials
(2) Super-strength and ductility of nano-thin films
(3) Nanomechanics of biomaterials
(4) Mechanical behaviors of carbon nano-tube, nano-wire, nano-layers
(5) Micro-mechanics models and simulations for the nanostructured materials
(6) Mechanical behaviors of other nano-materials

Actually, the theme of the lectures, discussions as well as the round table discussions
in the symposium, was a proper evaluation of the perspectives and trends in the area
of mechanical behaviors of nano-structured materials. In particular, in the two-hour
round table discussion held in the final afternoon of the symposium, participants
passionately discussed several hot topics, probable future developments, interdiscip-
linary research and young people’s education, etc. In order to meet the challenges,
some important questions were highlighted, such as:

ix
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How to promote interdisciplinary research and cooperation, for instance the stim-
ulation of studying nano-structured materials from physics, chemistry to mechanics;
How to highlight the frontier to guide its evolution/revolution; to create new micro-
mechanics; How to develop innovative education programs for training young people
in the emerging area? Etc.

To respond to these questions, some valuable suggestions and enlightening vis-
ions were proposed during the symposium.

Firstly, nano-structured materials possess nice geometrical patterns and demon-
strate splendid behaviors, but they also form huge challenges to the mechanics com-
munity both theoretically and experimentally. For example, for some nano-structured
materials, elasticity theory is valid to some extent, but for soft ones, few ideas are
available. Facing these advances and challenges, the mechanics community should
focus on building a bridge between the atomic reality in materials and the continuum
in mechanics. Particularly, this should open up new opportunities in mechanics. Dur-
ing this course, perspectives for new ideas and methods are badly needed. New mech-
anics beyond conventional constitutive laws, integration of multiple length and time
scales, etc. may emerge. So we cannot think of mechanics in traditional sense. In this
aspect, the symposium covers a diversity of topics and methodologies, which will be
very helpful in many related areas.

Nano-mechanical measurements to validate formulations, descriptions or con-
cepts for nanosystems are very important. How to measure these phenomena pre-
cisely in the dimensionality at micro and nano-scales needs specific and novel tech-
niques. For instance, the measurements of various inter-atomic forces, etc. become
critically significant in mechanics at nanoscales. It is also necessary to overcome
barriers between nano-scale mechanics and nano-manipulations. There are huge and
urgent needs for precise measurements, to meet the needs new exciting tools will
become available. Will we need new physics or will classical concepts be enough?

The combination of mechanics with other fields is important. Firstly, familiarity
with other fields to properly define necessary theories/models is critical. In mech-
anics and materials communities, we are in close collaboration through modeling
and simulations together with experimentation. New computational and theoretical
micro-mechanics have been developed, and have made calculations of large systems
possible in order to understand material behavior at microscales. Nano-scale exper-
imental mechanical techniques made the understanding even more convincing. To
exchange ideas and knowledge and provide valuable networking opportunities for
researchers in the overlapping fields should be further encouraged. Secondly, a reas-
onable amount of materials are needed for mechanical tests and measurements. Re-
garding the exchange of material samples, sometimes the quantity of nano-structured
materials is limited. This may lead to the lack of systematic studies on the production
yield and quality control. Therefore, close cooperation to support enough and high
quality experiments is needed. Finally, nano-manufacture with precision, control and
large quantity needs further attention. In these aspects, what is the role of mechanics
in nanomanufacturing? What are the emerging industries that will need large quant-
ities of nano-structured materials? Anyway, the convergence of mechanics, materials
science, as well industries is the other key in this area.
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Since nanotechnology has emerged very rapidly but mechanical engineers are not
well trained in the fields that bridge the nanosciences with engineering, the training
in these fields is of great importance in providing society with the useful outcomes
of these technologies. The mechanics community should be aware of what the sig-
nificant components of nanotechnology are. What kind of nano-structured materials:
nanoscale materials, nanoparticles, nanophase materials, etc. are needed in practice?
What are their applications? From a young people’s point of view, we are dealing
with an exciting issue: nano is redefining science, in which mechanics is an active
field. One of exciting things for mechanics people is to look at new materials and
their new behaviors (including electrical, optical and biological). Here challenges
and opportunities co-exist. For graduate students, it is an exciting time with great
opportunities. To grasp the opportunities, one should be independent, creative and
innovative. Mechanics people are not only clever but also quick in catching new op-
portunities. However, we still do not have good classes in these crossover fields/areas,
especially when it comes to thinking about graduate level classes. So it is needed to
integrate fundamental courses with these new challenges. Optimistic about the fu-
ture, one needs to learn as much as possible, willing to adopt to new fields, ready and
flexibility for change, but not to follow fashions.

The symposium was organized by the Chinese Society of Theoretical and
Applied Mechanics (CSTAM), the Institute of Mechanics, the Chinese Academy
of Sciences (CAS) and the department of engineering mechanics at Tsinghua
University. The generous financial support of IUTAM is very much appreciated. We
are also grateful for the support from CSTAM, NSFC (National Natural Science
Foundation of China), the Institute of Mechanics Chinese Academy of Sciences
and Tsinghua University. Special thanks should be given to Mr. Yang Yazheng and
Ms. Tang Ya-Nan of the CSTAM office. In particular, we would like to take this
opportunity to thank the authors for their cooperative efforts in quickly revising and
returning their manuscripts. Finally, we would like to thank the staff of Springer for
publishing the proceedings on time.

Yilong Bai
Quanshui Zheng
Yueguang Wei
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Mesoscopic Modeling of the Deformation and
Fracture of Nanocrystalline Metals

Lallit Anand∗ and Yujie Wei

Department of Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, MA 02139, U.S.A.; ∗E-mail: anand@mit.edu

Abstract. In order to model the effects of grain boundaries in nanocrystalline materials we
have coupled a crystal-plasticity model for the grain interiors with a new elastic-plastic grain-
boundary interface model which accounts for both reversible elastic, as well irreversible in-
elastic sliding-separation deformations at the grain boundaries prior to failure. We have used
this new computational capability to study the deformation and fracture response of nano-
crystalline nickel. The results from the simulations capture the macroscopic experimentally-
observed tensile stress-strain curves, and the dominant microstructural inelastic deformation
and fracture mechanisms in this material. The macroscopically-observed nonlinearity in the
stress-strain response is mainly due to the inelastic response of the grain boundaries. Plastic
deformation in the interior of the grains prior to the formation of grain-boundary cracks was
rarely observed. The stress concentrations at the tips of the distributed grain-boundary cracks,
and at grain-boundary triple junctions, cause a limited amount of plastic deformation in the
high-strength grain interiors. The competition of grain-boundary deformation with that in the
grain interiors determines the observed macroscopic stress-strain response, and the overall
ductility. In nanocrystalline nickel, the high yield strength of the grain interiors and relatively
weaker grain-boundary interfaces account for the low ductility of this material in tension.

Key words: crystal plasticity, interface failure, finite elements.

1 Introduction

In contrast to conventional grain-sized materials, nanocrystalline (nc) materials typ-
ically exhibit ultrahigh strength/hardness, but with an attendant much-reduced ductil-
ity (e.g., Gleiter, 1989; Suryanarayana, 1995; Torre et al., 2002). For example, while
the ultimate tensile strength levels in (nominally fully-dense) electro-deposited nc-
nickel, approach ≈ 1500 MPa, the ductility that can be obtained in this material
is generally low and usually does not exceed ≈ 3% (Torre et al., 2002). Kumar et
al. (2003) have recently reported on an extensive set of experiments that they con-
ducted to observe the deformation mechanisms in electro-deposited nc-nickel both
after and during deformation using transmission electron microscopy (TEM). Briefly,
they concluded (a) the density of dislocations visible in their deformed specimens

3

Yilong Bai et al. (eds), IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of
Nanostructured Materials, 3–10.
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www.manaraa.com

L. Anand and Y. Wei

could not account for the macroscopically-imposed plastic strains; (b) observations
of tensile specimens which contained perforations in the center of their gage sections
and which were incrementally strained in discrete steps in-situ in a TEM, provided
evidence of nucleation and growth of grain-boundary cracks and triple junction voids
ahead of a growing crack. Their experiments show that the grain-boundary slip and
separation, together with dislocation-based plasticity in the interior of grains adja-
cent to the propagating crack, are the dominant mechanisms of inelastic deformation
in the “process-zone” associated with the tip of a crack in nc-nickel.

Atomistic computer simulations of nc-metals have also been widely reported in
the recent literature (e.g., Schiotz et al., 1998; Swygenhoven et al., 2002; Yamakov et
al., 2001; Farkas et al., 2002). These atomistic simulations collectively show that as
the grain size decreases, intra-granular plasticity driven by dislocation mechanisms
becomes more difficult at nanometer-scale grain sizes, and that the macroscopically-
imposed deformation is accommodated by grain-boundary sliding and separation.1

Thus, from the physical experiments and atomistic simulations reported in the lit-
erature, it is clear that grain-boundary-related slip and separation phenomena begin
to play an important role in the overall inelastic response of a polycrystalline material
when the grain-size decreases to diameters under ≈ 100 nm, and dislocation activ-
ity within the grain interiors becomes more difficult. One possible computationally-
tractable modelling approach to account for the combined effects of grain-boundary-
related deformation as well as plasticity within the grains, is to couple a single-crystal
plasticity constitutive model for the grain interior with an appropriate cohesive in-
terface constitutive model to account for grain-boundary sliding and separation phe-
nomena.

The purpose of this brief paper is to introduce a new numerical simulation cap-
ability to study the deformation and fracture response of a poly-crystalline aggregate
with an accounting of the grain-interior using standard crystal plasticity, and an ac-
counting for grain-boundary response using a new elastic-plastic traction-separation
constitutive model (Wei and Anand, 2004). Such a computational capability serves
as a meso-scale simulation tool to study the deformation and fracture response of
nanocrystalline materials.

2 Modeling Methodology

In recent years, cohesive interface models have been widely used to numerically
simulate fracture initiation and growth by the finite element method (e.g., Xu and
Needleman, 1994); however, most such models are limited to traction-separation
relations which are nonlinear elastic and therefore reversible in nature. Since ac-
counting for dissipation due to grain-boundary sliding and separation is of paramount
importance, we have developed an elastic-plastic interface constitutive model to sim-
ulate such grain boundary phenomena in nc-materials. The reader is referred to Su

1 We note that since atomistic calculations involve only a limited number of grains and nearly
instantaneous (in a matter of picoseconds) loading, they only provide a qualitative under-
standing of the real mechanical response of materials at laboratory length and time-scales.

4
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Both the interface model and the single crystal plasticity model have been im-
plemented in the finite element program ABAQUS/Explicit (ABAQUS, 2002) by
writing a USER INTERFACE subroutine and USER MATERIAL subroutine, re-
spectively. We have used this numerical simulation capability to model the response
of nc-nickel.

3 Application to nc-Nickel

Experimentally-measured stress-strain curves in simple tension from specimens of
electro-deposited nc-nickel with grain sizes ranging from 15nm to 40nm from dif-
ferent groups show a highly nonlinear stress-strain response up to an ultimate tensile
strength between ≈ 1.3 to 1.7 GPa, and final fracture at strain levels ranging from ≈
2.5 to 5% (e.g., Wang et al., 1997; Yin and Whang, 2001; Xiao et al., 2001; Torre
et al., 2002). We shall use this representative experimental information to estimate
the material parameters for the grain interiors as well as the grain boundaries by ju-
diciously adjusting the values of the material parameters in our constitutive model to
approximately match these stress-strain curves.

For reasons of computational efficiency, in our simulations we have used a quasi-
three-dimensional polycrystalline aggregate consisting of a collection of columnar
grains.2 A finite element model of a polycrystalline aggregate containing 50 colum-
nar grains is shown in Figures 1a and 1b. Note that in order to capture the possible
heterogeneous nature of deformation in each grain, the grain interiors are modelled
by a number of finite elements. Figure 1c shows an experimentally-measured (111)
pole figure of as-received electrodeposited nc-nickel (Xiao et al., 2001); the pole
figure projection direction is normal to the plane of the sheet specimen. The cor-
responding (111) pole figure from the discrete grain orientations assigned to the 50
grains used in the polycrystal simulation is shown in Figure 1d.

For the grain interiors, the anisotropic elasticity tensor C is specified in terms of
three stiffness parameters, C11, C12 and C44. The values of the elastic parameters
for nickel are taken as (Simmons and Wang, 1971):

C11 = 247 Gpa, C12 = 147 Gpa, C44 = 125 Gpa.

For f.c.c. crystals, crystallographic slip is assumed to occur on the standard
twelve {111} < 110 > slip systems.

Molecular dynamics simulations show that when grain-boundary deformation
cannot be accommodated due to geometric restrictions, local stress concentrations
develop to cause the emission of a few partial dislocations from grain boundaries,
and these high stresses drive the partial dislocations across the grain interiors to be

2 Electro-deposited nc-nickel does possess an approximately columnar grain structure; see
Kumar et al. (2003, figure 1c).

5

et al. (2004) and Wei and Anand (2004) for the details of the interface model. As
to the deformation in grain interior, we shall employ the now classical single-crystal
plasticity theory.
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Fig. 1. (a) Initial microstructure represented by 50 columnar grains. (b) Finite-element mesh.
(c) Experimental (111) pole figure of as-received electrode-posited nc-nickel from Xiao et
al. (2001); pole figure projection direction is normal to the plane of the sheet specimen.
(d) (111) pole figures corresponding to the grain orientations used in the polycrystal simula-
tion. Traction-separation curves used for nc-nickel: (e) in the normal direction to an interface,
and (f) in the tangential direction to an interface.

absorbed in the opposite grain boundaries. With this mechanism in mind, we assume
that the slip resistances for the grain interiors sα are all equal to a constant s0, in-
terpreted as the resistance to emission of partial dislocations from grain-boundaries
into the grain interiors. The value of s0 is estimated as

s0 ≈ Gb

D
, (1)

6
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Fig. 2. (a) Stress-strain curves from the simulation and literatures. Contour plots (b) through
(e) of the equivalent plastic strain in the grain interiors corresponding to different macroscopic
strain level (a–d) keyed to the stress-strain curve.

with G = √
(C11 − C12)C44/2 denoting a shear modulus, b the magnitude of the

Burgers vector, and D denoting the grain size.3 For typical values of G ≈ 80 MPa
and b ≈ 0.3 nm for Ni, and a grain size D ≈ 30 nm, we obtain a value

s0 ≈ 800 MPa, (2)

for a 30 nm grain-sized nc-nickel.
Using the previously listed assumptions for the grain-interior response, we estim-

ated the grain-boundary traction-separation response by matching our corresponding
numerical simulations to the experimental tensile stress-strain curves published in
the literature. The estimated traction-separation curves for nc-nickel in the normal
direction to an interface, and in the tangential direction to an interface are shown
Figures 1e and 1f, respectively. The fitted macroscopic stress-strain curve is shown
in Figure 2a.

Figures 2b through 2e show contours of the equivalent plastic strain ε̄p in the
grains, corresponding to four different points, labelled a through d, on the stress-
strain response, Figure 2a; the tension direction is horizontal in the plane of the

3 More refined estimates based on stacking fault energies of partial dislocations may be made,
but we do not go into such refinements here (Asaro et al., 2003).

7
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paper.4 Since Figure 2b shows essentially no plastic strain in the grain interiors, the
nonlinearity in the macroscopic stress-strain curve up to point a is due entirely to
the nonlinear elastic-plastic interface response. By point b (Figure 2c) on the stress-
strain curve, there is some plastic strain in the vicinity of a few grain-boundary triple
junctions; however, the major cause for the macroscopic nonlinear stress-strain re-
sponse is still the nonlinear interface response; indeed, by this stage a few of the
interfaces have visibly failed. By point c (Figure 2d), near the peak of the stress-
strain curve, there is a dominant macroscopic crack traversing along several grain
boundaries (top left of Figure 2d), and substantial plastic strain within the interiors
of the grains at the tip of the crack. By point d (Figure 2e) on the stress-strain curve
at least three dominant interface cracks are clearly visible, and the material has lost
a large fraction of its stress-carrying capacity. The propagation of grain-boundary
cracks causes a substantial amount of plastic deformation in the interior of the grains
blocking the crack-path, and in the boundary regions of the grains adjacent to the
crack path. In order to further understand the origin of the nonlinear stress-strain
response of the nc-nickel during tension, we numerically suppressed plastic deform-
ation in both the grain interiors and the grain boundaries. This gives the response
labelled “Elastic” in Figure 3. When in addition grain-interior-plasticity is also al-
lowed, the curve is indicated by GIP in Figure 3. These first two cases, clearly do not
resemble the shape of the experimentally-measured macroscopic stress-strain curve
of nc-nickel. Next the case when elastic-plastic grain boundary deformation is al-
lowed, and grain interior only deforms elastically is labelled as GB in the figure;
the stress-strain curve is close to the experimentally-measured curve. The case when
both grain boundary and grain interior plastic deformation is allowed is labelled as
GB & GIP, and this gives (as expected) a slightly softer response. Thus, it is clear
that up to ≈ 3% strain, the macroscopic stress-strain is dominated by the nonlinear
grain-boundary response.

4 Concluding Remarks

To model the effects of grain boundaries in polycrystalline materials we have coupled
a standard crystal-plasticity model for the grain interiors with a new elastic-plastic
grain-boundary interface model. We have used this new computational capability to
study the deformation and fracture response of nc-nickel in simple tension. The res-
ults from the simulations capture the experimentally-observed stress-strain curves,
and the dominant fracture mechanisms in this material (Kumar et al., 2003). The
macroscopically-observed nonlinearity in the stress-strain response is mainly due
to the inelastic response of the grain-boundaries. Plastic deformation in the interior
of the grains prior to the formation of grain-boundary cracks was rarely observed.
The stress concentrations at the tips of the distributed grain-boundary cracks, and
at grain-boundary triple junctions, cause a limited amount of plastic deformation
in the high-strength grain interiors. The competition of grain-boundary deformation

4 For clarity, the maximum value of the ε̄p contours is set to 5% for all four contour plots.
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Fig. 3. Comparison of stress-strain curves in tension from several numerical simulation cases:
only elastic deformation is allowed for both grain boundary and grain interior (Elastic); grain
boundary deformation is suppressed and grain interior may deform elastic-plastically (GIP);
elastic-plastic grain boundary deformation is allowed and grain interior only deforms elast-
ically (GB); as well as both grain boundary and grain interior plastic deformation is allowed
(GB & GIP).

with that in the grain-interiors determines the observed macroscopic stress-strain re-
sponse, and the overall ductility. In nc-nickel, the high yield strength of the grain
interiors and relatively weaker grain-boundary interfaces account for the low ductil-
ity of this material in tension. Full details of our study may be found in Wei and
Anand (2004).
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Abstract. Dislocation plasticity would conventionally induce textures in polycrystalline
metals after a large deformation. We used parallel molecular dynamics (MD) to simulate the
plastic deformation of nanocrystalline copper to an isochoric stretch up to 100% logarithmic
strain. We found that the movements of partial dislocations that dominate the deformation
process do not lead to texture formation. The grain size distribution becomes extremely in-
homogeneous. By observing the structural evolution, we demonstrate that partial dislocations
assisted the grain growth that destroys the texture.

Key words: grain growth, nanocrystals, MD simulation, copper.

1 Introduction

Plastic deformation in polycrystalline metals at room temperature is generally caused
by the movements of dislocations. Limited by the number of available slip systems,
the grains will change their shapes and rotate towards a limited number of stable con-
figurations, thus create a texture after a large deformation [1]. Nanocrystalline metals
may behave differently from their coarse-grained counterparts. Then it is natural to
ask whether the same deformation induced textures will develop in nanocrystalline
metals. Cold rolling experiments on nanocrystalline copper [2] and palladium [3]
showed no trace of textures formation and the grain shape remained equiaxed. Dis-
location activities were evidenced during the rolling processes by the increase of the
microstrain or the stacking fault density. However, the rather low strain rate sug-
gest that the deformation mechanism was dominated by the grain boundary sliding
and the grain rotation assisted by the grain boundary diffusion [2, 3]. The formation
of textures was greatly suppressed by the grain boundary activities, similar to what
had been observed in fine-grained superplastic alloys and ceramics deformed at high
temperatures. The important role of partial dislocations was recognized by MD sim-
ulations [4–6] in rapidly deforming the nanocrystalline metals. These simulations are
typically performed under high strain rate and low temperatures. Therefore the grain
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boundary diffusion was greatly reduced and the deformation process was mainly con-
trolled by the movements of partial dislocations. The logarithmic strains achieved in
the early MD simulations were no more than 10%, incapable of the prediction of tex-
ture formation. This paper will examine the issue for nanocrystalline copper to the
regime of large deformation by MD simulations that naturally down-plays the effect
of the grain boundary diffusion.

2 Simulation Scheme

The simulation was carried out by standard MD techniques, with the atomic inter-
actions for copper [7] described by an embedded atom method potential. Three-
dimensional Voronoi construction [8] was used to generate the nanocrystalline model
for computation. The sample configuration involves 1,048,645 atoms and 64 ran-
domly oriented grains with an average grain size about 7 nm. Periodic side boundar-
ies were maintained throughout the simulation. The isochoric stretching of a nano-
crystalline copper box was conducted by parallel molecular dynamics simulations
under the Linked-Cell-List algorithm [9]. The initial MD simulation carried 3000
annealing relaxation steps at 300 K, using Verlet leapfrog algorithm [10] with MD
time step of 2 fs. The loading was imposed under a quasi-homogeneous manner. A
homogeneous affine deformation of 0.1% stretching and 0.05% lateral contraction
was enforced. Then 500 relaxing steps were executed at 300 K by maintaining a
NVT ensemble. The stretching rate was 109 s−1 and the total simulation time was
1.006 ns. Figures 1a and 1b showed the atom configurations of 6% and 91% logar-
ithmic strains respectively. The atoms in grain boundaries, stacking faults or inside
grains were identified by local crystalline order [11, 12]. Comparing the two config-
urations in Figure 1, one finds the grain boundaries were widened and the disordered
atoms increased after a large deformation. In order to maintain the plastic deform-
ation, more and more partial dislocations emitted from grain boundaries or triple
junctions and passed through grains. Partial dislocations were left behind the stack-
ing faults. At the stage of both small (Figure 1a) and large deformation (Figure 1b),
only a few slip systems, generally less than three in each grain, were activated. The
strain compatibility could not be met along the grain boundaries if the plasticity was
only mediated by movements of partial dislocations. The atoms near grain boundar-
ies adjusted their locations locally under the high flow stress, in the form of a large
number of small sliding events. These small slipping facilitated the grain rotation
process. It was found in the simulation that the grains tended to rotate to the tensile
direction, with a grain rotation rate less than 4 degree per 1% logarithmic strain.
As the deformation continued, the grain boundaries widened and triple junctions en-
larged to accommodate the accumulated misfit strain among grains.

3 Key Results

The flow stress, shown in Figure 2a, was kept about 2.25 GPa after about 5 to 6%
logarithmic strain. However, a stable flow stress does not necessarily imply a steady
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(a)

(b)

Fig. 1. Local crystalline order of nanocrystalline Cu under uniform stretching of (a) 6% and
(b) 91% logarithmic strains. The atoms in FCC stacking sequence are referred to as the perfect
lattice and colored green; the atoms of HCP stacking sequence are regarded as the stacking
fault and colored red, while the atoms with other crystalline orders are thought as grain bound-
ary and painted blue.
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Fig. 2. (a) The curve for the stress versus logarithmic strain; (b) the percentage variations
of atoms in perfect FCC, stacking faults and grain boundaries; (c) the variation of the grain
number during the deformation process.

state. The atom configuration kept evolving as the deformation proceeded. Figure 2b
showed the percentage variations of perfect FCC, stacking fault and grain boundary
atoms. The regular FCC atoms steadily decline from the initial percentage of about
70% to merely 30% at 30% logarithmic strain. At the same strain level, the atoms
percentage in stacking faults shoots up to nearly 30%. The atom percentage in grain
boundaries modulates from the initial percentage of 30% to 40%. After 30% logar-
ithmic strain, these percentages remained steadily with the deformation up to 100%
logarithmic strain. The increases on the percentages of the stacking fault and grain
boundary atoms indicated the disorder of the nanocrystalline sample was enhanced
at large deformation. Hidden behind the steady percentages of perfect FCC, stacking
fault, and grain boundary atoms, the changes in the grain configuration were still
enormous in the large stretch regime. To reveal this change, one may classify atoms
of the sample into three categories: the “grain boundary atoms” unrecognized by the
local crystalline order method; the “pseudo-boundary atoms” locating within three
layers thickness between the perfect FCC atoms and the grain boundary ones; and the
remaining “pure grain atoms”. This classification obtains clean isolated grains and
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Fig. 3. Size distribution of grains at (a) 0%, (b) 10%, (c) 50% and (d) 91% logarithmic strains.
Only the grains containing more than 1000 atoms are considered.

eliminates the scattering clusters of a few atoms which observe the FCC crystalline
order. The number of grains which is larger than the average one decreases sharply
at the initial 20% logarithmic strain. Then the trend became slow with the stretch-
ing strain, as plotted in Figure 2c. At the end of the deformation, most of the grains
merged into a few super grains and others were cut into small colonies, containing
only several thousands of atoms.

The grain size distribution became inhomogeneous in the regime of large de-
formation, as delineated in Figure 3. The grain size distribution became bimodal
after 10% of deformation (Figure 3b). A few grains grew up obviously. When the
deformation reached 50% logarithmic strain, the first peak moved toward a smaller
size and the second peak became flat (Figure 3c). Two grains grew to rather large
sizes. After 91% logarithmic strain, the size distribution of the grains in the sample
became very dispersive (Figure 3d). The largest grain had the number of atoms about
3.8 × 105 and an approximate size of 18 nm. The upper right inset showed that the
number of the smaller grains also decreased. The reason might lie in the merging
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Fig. 4. (a) Stacking faults vertically pass through small angle grain boundary (from the left
to the right). Three stages of the stacking fault penetration are shown: onset of stacking
fault passing (left); partial merge of neighboring grains (middle) and complete merge (right).
(b) Configuration of a large pure grain under 40% stretching strain. The connection area has a
twin-like structure manifested by stacking faults parallel to the previous grain boundary. The
cross-section view gives the orthomorphic projection of the area circled in the left.

process among grains. The process of grain refinement is unlikely since the grain
boundary sliding, rather than the movements of partial dislocations, would dominate
the deformation mechanisms for a small grain size of 4 or 5 nm.

4 Discussions

Two modes of grain combination processes were revealed: penetration of the stack-
ing faults through low angle grain boundaries at small deformation (Figure 4a) and
the formation of twin-like structures at large deformation (Figure 4b). The two mech-
anisms were different from the observations of MD simulation by Hasnaoui et al. [6]
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and Haslam et al. [13]. In [6] the sample of the nanocrystalline nickel was deformed
at 0.46Tm and in [13] that of the nanocrystalline palladium at 0.66Tm, with Tm being
the melting temperature. For the relative high temperature, grain boundaries diffu-
sion gained higher mobility to replace the role of partial dislocations. Both in [6] and
[13], low-angle grain boundaries were found to disassociate into partial dislocations,
propagate into grains and lead to the grain coalescence. In [13], grain boundary mi-
gration assisted by diffusion accounted for the most grain growth. The simulation
presented in this paper was undertaken at rather low temperature, i.e. 0.22Tm. Two
modes of grain growth concerned with the kinematics of stacking fault propagation
and the grain rotation. In the small deformation regime, grain merge gave priority to
those neighboring grains whose mis-orientations are below 10 degrees. The stacking
faults burst through the boundary between the neighboring grains vertically, see Fig-
ure 4a from the left to the right. The mis-orientation of two neighboring grains would
be eliminated gradually, which was presented as the partial merge (the middle graph
in Figure 4a) and the final consolidation (the right graph of Figure 4a) processes. The
larger grain formed by such mode was stable in the later evolution. Another mode
dominated the merge during the large strain regime for the neighboring grains with
large mis-orientations. The merge process was featured by parallel (instead of ver-
tical in the small strain regime) passing of stacking faults through the grain boundary.
Figure 4b showed the configuration of a large grain under 40% logarithmic strains.
The grain was evolved by combining two small ones situated at the top and bottom
of the figure. The central connection neck is composed of stacking faults which are
parallel to the previous grain boundary. A cross-section view of the orthomorphic
projection of the area circled in the left was delineated in the right of Figure 4b. The
red neck-like HCP configuration area can be viewed as the twin-type grain boundary
layer for the adjacent grains (in green color), as evidenced by the twin-type orient-
ations marked by the arrows. The zigzag path indicates a linking route through the
closest atoms to depict the twin-like structure. As suggested by Derlet et al. [14] and
Kumar et al. [15], this twin-like structure was formed at large deformations and was
caused by emission of a second partial dislocation on an adjacent slip plane. The
merged grain was comparatively unstable and might separate again.

Careful observations on the structure evolution showed no textures were formed
in our simulation. Initial deformation was dominated by partial dislocations. As
the deformation continued, the disordered atoms and the formation of twin-like
structures encumbered the activities of partial dislocations. The twin-like structures,
formed at large deformations, are effective barriers to the movements of disloca-
tions and thus disturb and hinder the texture evolution among large grains. The grain
merge process gives rise to inhomogeneous grain size distribution in the sample. The
extremely small grains would facilitate the grain boundary activities that also served
for the reduction of textures. This nature of nanocrystalline metals provides a mech-
anism to maintain their physical properties isotropic even after large deformations.
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Abstract. Tensile test was performed on an electrodeposited pure Cu sample with high dens-
ity growth-in twins confined in the submicro-sized grains. It is found that the Cu sample has
an ultra-high tensile strength (∼1.0 GPa) and a good ductility (∼13.5%). Microstructure ob-
servations indicated that twin boundary provides a strong barrier for the motion of dislocations
during plastic deformation.

Key words: nano-scale twins, twin boundary, copper, strength.

1 Introduction

Grain refinement which introduces more grain boundaries (GBs), one of the main
barriers to lattice dislocation motion, is effective in strengthening metals. When
grains are refined down to an extreme dimension, e.g., into the nanometer regime,
where lattice dislocation motion is significantly suppressed by a high density of GBs,
an extremely high strength will be expected. Experimental observations showed that
most nanocrystalline (nc) metals have significantly high strength (which can be 4–
6 times higher than that of coarse-grained (CG) Cu [1–4]). However, they are very
brittle typically with an elongation-to-failure less than a few percent in tension [1, 2,
5], even for those ductile metals in CG forms such as Cu and Al. The strength and
ductility are trade-off in the metallic materials. The brittleness of nc metals, which
greatly limits their technological applications, originates intrinsically from the sup-
pressed dislocation activities by a high density of GBs besides the extrinsic effect
from the processing flaws, such as porosities and contaminations, etc. [1, 2].

Twin boundary (TB), a special kind of boundary, may block the motion of dislo-
cations to strengthen materials, analogous to the conventional GBs [6–9]. An early
study on an à-brass with twin spacing in the micrometer regime showed that TBs
are equivalent to conventional GBs with respect to the H–P relation strengthening
[10]. It seems TBs can be used as an alternative practical approach for strengthening
materials. In this work, high density of twins with nanoscale spacing was introduced
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Fig. 1. Typical TEM planar-view microstructure observations ((a) bright field with correspond-
ing SAED pattern and (b) dark field) of the as-deposited sample. (c) A close TEM observation
of the twins with a SAED pattern in inset.

in a pure Cu sample by means of pulsed electrodeposition technique. The strength of
the Cu sample was investigated by tensile tests at room temperature.

2 Experimental Details

High purity copper foils (20 × 10 × 0.1 mm3 in size) with nano-scale growth twin
lamellae were synthesized by means of the pulsed electro-deposition technique from
a solution of CuSO4. Details of the sample preparation were described in [11].
Chemical analysis indicated that the purity of as-deposited Cu was better than 99.998
at.% with a sulfur content of less than 8 ppm. Contents of oxygen and hydrogen
were determined to be less than 20 ppm and 15 ppm, respectively. Density of the
as-deposited Cu sample was 8.93 ± 0.03 g/cm3.

Microhardness measurements were performed on a MVK-H300 hardness testing
machine with a load of 5 g and a loading time of 10 s. Both sides of the Cu specimens
were mechanically ground and electrolytically polished before the measurements.
Uniaxial tensile tests were performed on a Tytron 250 microforce testing system
(MTS) at a constant strain rate of 6 × 10−3 s−1 at room temperature. The gauge
length of the dogbone-shaped specimen was 4 mm with a width of 2 mm. Four Cu
samples were tested with a final thickness after electro-polishing of about 16–25 µm.

Microstructures of the as-deposited and the as-deformed Cu samples were char-
acterized by means of transmission electron microscopy (TEM) on a JEM2010 mi-
croscope (with an accelerating voltage of 200 kV). Thin foil specimens for TEM
observations were prepared by using conventional twin-jet polishing technique at
about −10◦C.

20



www.manaraa.com

Microstructure and Tensile Strength of Cu with Nano-Scale Twins

Fig. 2. Tensile true stress–true strain curves for as-deposited nt Cu sample. For comparison,
tensile stress–strain curves for a coarse-grained (CG) Cu is also included.

3 Results and Discussion

From the TEM images of the as-deposited nano twin (nt) Cu sample (Figures 1a and
1b), one can see clearly irregular-shaped grains with random orientations, as indic-
ated by the selected area electron diffraction (SAED) pattern. The grain sizes vary
within 100 nm to 1 µm with an average value of about 400 nm. As the TEM im-
ages show, most grains contain multiple lamellar structures (as shown in Figure 1c).
Most of them are of {111}/[112] type with twinning elements, e.g., M: (1̄11̄)/[1̄12]
and T : (1̄11)/[11̄2] (as indicated by the corresponding SAED pattern in Figure 1c).
Statistic measurements of the twin lamellar spacing show an average value of about
20 nm. Clearly, the high density growth-in coherent TBs subdivided the submicro-
sized grains into nanometer-sized twin/matrix lamellar structure. Lattice dislocation
can hardly be detected in most thin lamellae, but some dislocations are visible in
thick layers. This agrees with the X-ray diffraction result that a negligible atomic
level lattice strain was identified. X-ray diffraction patterns show an evident (110)
texture in the samples, which is consistent with previous observations in electrode-
posited Cu specimens with growth twins [12, 13]. The length of twin lamellar geo-
metry varies from about 100 nm to ∼1 µm (depending on the grain diameter).

Figure 2 shows typical true stress vs true strain curves for as-deposited nt
Cu sample, in comparison with that for the annealed CG Cu sample (grain size
> 100 µm). Obviously, the as-deposited nt Cu sample exhibits much higher strength
than that of the CG counterpart. For as-deposited nt Cu sample, The tensile yield
strength σy (at 0.2% offset) reaches as high as 900 MPa and the ultimate tensile
strength (σUTS) is 1068 MPa, which are about one order of magnitude higher than
those of the CG Cu (the yield stress is about 50 MPa and the ultimate tensile

21



www.manaraa.com

Y.F. Shen et al.

Fig. 3. A TEM image of the microstructure close to the failure surface of as-deposited sample
after tensile tests.

strength is about 250 MPa). The microhardness result agrees very well with the
tensile data. The values of Hv/3 can be approximated as the yield strength in tension
(Hv ≈ 2.67 ± 0.05 GPa, an average value from 12 tests). In addition, the strength
values for the as-deposited nt Cu sample are evidently higher than those reported for
polycrystalline pure Cu with 3D grain sizes down into the nanometer scale [2, 5, 14].

In Figure 2, one can also see the nt Cu sample shows a considerable tensile
ductility, with an elongation-to-failure value of 13.5%, which is also much larger
than that of the previous nanocrystalline Cu specimens with comparable grain size
(tens nm) [5]. A slight strain hardening appears in the major plastic deformation stage
for sample, indicated that some dislocations accumulated during the plastic straining
prior to failure. Obvious necking behaviors were noticed in the deformed samples
after tensile tests.

Figure 3 shows a typical TEM image of the strained nt Cu sample (after tensile
tests). Comparing with the clear microstructure of the as-deposited nt Cu sample
(in Figures 1a–1c), the structure of the after-tensile nt Cu sample is much strained.
Most TBs become “dirty” (with stress field induced contrasts) under TEM observa-
tions. Some TBs are not straight lines as in the as-deposited sample and a few TBs
seem disappeare. Lots of dislocations are detected, but the distributions of disloca-
tions were not uniform; the inhomogeneous dislocation distribution may originate
from the layer thickness effect as well as from different grain orientations. Plenty of
dislocations (and dislocation tangles) are identified inside the thick lamellae. Most
dislocations in the lamellae seem to terminate either at TBs or at grain boundaries.
TBs separating thick lamellae become less distinct at which a high density of dis-
locations locates. Few dislocations are found in thin lamellae and TBs separating
thin layers are as distinct as in the as-deposited sample. A close observation of the
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TBs revealed that a large number of dislocations locate at these TBs with a spacing
ranging from several to several tens nanometers.

Microstructural investigations of the Cu samples after deformation confirmed
that the interaction between TBs and dislocations plays a crucial role in the plastic
deformation process. The interaction between slip dislocation and coherent TBs in
face-centered cubic (fcc) metals has been extensively investigated [6]. It is known
that when glide dislocations (which may be generated at GBs or triple junctions
upon straining) encounter TBs inside the grain, in most cases the dislocation glide
will be inhibited by the high density of TBs. However, these dislocations could also
pile-up and propagate across the twins if they were to undergo dislocation dissoci-
ation reactions, which require stress concentrations at twin-slip band intersection,
thus leading to strengthening. In this case, coherent TBs behave more or less like
GBs in acting as obstacles to plastic deformation [9, 15, 16]. When the twin lamellae
are thick, dislocation pile-ups form and produce a certain stress concentration at the
TBs; in this case, a lower applied stress is needed to activate the slip transmission
across TBs. The thinner the twin lamellae, the higher the external stress required for
the dislocations to cross the TBs. If the twin spacing is too thin to have a dislocation
pile-up, only a single dislocation penetrates the TB. This is the extreme case and a
very high stress is required. Recent molecular dynamic (MD) simulation results on
the role of TB in blocking a single dislocation transmission in fcc metals strongly
supports the observed experimental phenomenon [17]. It was found for the TBs in
Ni, the critical stress can be as high as 1.77 GPa for a single dislocation penetrating
a coherent TB.

The observed dislocation configurations in the deformed sample might also ac-
count for the measured plasticity. For the thick lamellae, plastic deformation will be
carried mainly by lattice dislocations inside the layers. While for thin lamellae, larger
plastic strains can be accommodated by a high density of dislocations locating at nu-
merous TBs. In addition, TB migration via movements of dislocation at TBs will also
be responsible for carrying plastic strains. Therefore, a higher plasticity is obtained
in the sample with higher density of twin lamellae. This observation is consistent
with a recent MD simulations [17] that have also indicated that when a perfect glide
dislocation with b = 1/2 [101] crosses a symmetric (111) TB, a Shockley partial
(with b = 1/6 [−1−12]) is left behind at the TB. The capacity of dislocation accu-
mulation at the TBs is enhanced by a high TB density, which consequently results in
an enhanced ductility during plastic deformation.

4 Summary

Presence of nano-scale twins in a pure ultrafine-grained Cu sample enhances the
tensile strength up to 1 GPa with an elongation-to-failure of 13.5%. The experimental
investigation demonstrated that TBs may act as effective obstacles to dislocation
motion and a high density of TBs with twin lamellae thickness in the nanometer
scale may significantly strengthen metals.
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Abstract. Atomistic studies of deformation-induced microstructural evolution in single crys-
talline metals are carried out to elucidate the mechanism of grain subdivision in a perfect crys-
tal. We review our simulations of tensile and torsion of miniaturized models. Then, rolling
of the iron nanoplate process is performed. Remarkable polycrystallization is observed in the
twisting and rolling problems, compared to the tension problem. According to the results, it is
concluded that the strain gradient plays an important role in grain subdivision.

Key words: plasticity, molecular dynamics, polycrystalline metal, grain subdivision.

1 Introduction

Improvement of a material’s properties by controlling its microstructure, such as
grain re-finement, attracts a great deal attention because it has the advantage of re-
cycling over other methods, such as using chemical composition or composite ma-
terials. In particular, severe plastic deformation (SPD) processes, e.g., high-pressure
torsion (HTP), equal-channel angular pressing/extrusion (ECAP/ECPE) and accu-
mulative roll-bonding (ARB) (Saito et al., 1999) can produce an ultrafine granular
structure. The microstructure obtained by inducing a large strain has a high defect
density. Studies of the internal structure obtained by SPD have been performed and
the relationship between texture and mechanical properties has been clarified in re-
cent research. For example, one study of the SPD process is examined using crystal
plasticity (Sivakumar and Ortiz, 2004) and another is applied the theory of higher-
order lattice defect (Seefeldt et al., 2001) to investigate grain subdivision (Hansen,
2001). However, many of the details of the mechanism of grain refinement or grain
subdivision are unknown. In this paper, atomistic studies of deformation-induced
microstructural evolution in single crystalline metals are described with the aim of

25

Yilong Bai et al. (eds), IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of
Nanostructured Materials, 25–35.
© 2007 Springer. Printed in the Netherlands.



www.manaraa.com

A. Nakatani and T. Shimokawa

Fig. 1. Analysis models. (a) Triangular two-dimensional lattice with a rotation of θ . (b) Fcc
single crystal model and active slip systems. (c) Torsion model. (d) Rolling model.

investigating the mechanism of grain subdivision in a perfect crystal. First, tensile
deformation of a two-dimensional triangular lattice system of iron, and tensile de-
formation of an aluminum single crystal in plane strain are studied. Second, we re-
view the torsion test of a nanowire that has been performed previously by the authors
and coworkers. Third, a nanoplate is rolled to investigate the grain subdivision of a
perfect crystal.

2 Models and Methodologies

We produce four different simulations to study the mechanism of the grain subdivi-
sion process in a single crystal under plastic deformation. Figure 1 is a schematic of
these models.

2.1 Tension of the Two-Dimensional Triangular Lattice System of Iron

Figure 1a shows a two-dimensional triangular lattice system of iron atoms that we
use for the tensile deformation simulation. In the figure, a is the lattice constant and
the lattice is rotated θ clockwise. The Morse potential is adopted as the interatomic
potential,

φ(r) = A{exp[−2α(r − r0)] − 2 exp[−α(r − r0)]}, (1)

where A = 8.160×10−20 J, r0 = 0.258 nm, and α = 14.57364 [1/nm]. The shifted-
force potential ϕs(r), which is defined by

φs(r) =
⎧⎨
⎩φ(r) − φ(rc) − [r − rc]

(
dφ
dr

)
rc
, r ≤ rc

0, r � rc

(2)
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is used, where rc = 0.6 nm is the cut-off distance. The lattice constant is a0 =
2.4935 Å and the cohesive energy is E0 = −1.573 eV in the static equilibrium
state.We define the thickness of this 2D model as a reference length a0 (lattice con-
stant). The elastic moduli are C11 = 203.4 GPa and C12 = C44 = 67.8 GPa.

From a simple preliminary calculation, the melting temperature of this system is
estimated to be greater than 3000 K but less than 3300 K. The analysis model con-
sists of the arrangement of Natom atoms in a rectangular region, and the dimensions
in the x- and y-directions are Lx and Ly , respectively. Periodic boundary conditions
are used in the x- and y-directions. First, a relaxation calculation is used to obtain
the thermal equilibrium state at 500 K. The pressure of the system is controlled to be
zero by the Parrinello–Rahman method. The tensile deformation is incorporated into
the elongation of the unit cell length Ly . The increment, 0.001 :y , is added to the cell
length every 0.5 ps. Therefore, the nominal strain rate is 2×109 [1/s]. The stress σxx

normal to the x-axis is controlled to be zero and the momentum of every atom is res-
caled to be equivalent to 500 K. The velocity Verlet integrator is used for integration
with respect to time. Three models (Models 1, 2, and 3) are considered to examine the
dependence of symmetry and specimen size. The parameters (θ, Lx, Ly,Natoms) of
Models 1, 2, and 3 are (0◦, 100.4 nm, 100.7 nm, 184338), (15◦, 113.8 nm, 109.5 nm,
226890), (0◦, 403.7 nm, 403.6 nm, 2970608), respectively.

2.2 Tension of an Aluminum Single Crystal in Plane Strain

Figure 1b shows a model of an aluminum crystal. The embedded atom method po-
tential proposed by Mishin et al. (1999) is used as the interatomic potential for
the aluminum single crystal. The periodic boundary condition is applied for all of
the three Cartesian axes. The mirror indices of x-, y-, and z-axes correspond to
[1̄10], [001], and [110], respectively. The dimensions of the specimen are set to
(Lx, Ly, Lz) = (33.37 nm, 19.55 nm, 2.58 nm). Since the unit cell length in the
z-direction Lz is quite small, the periodic boundary condition causes an artifact, i.e.,
active slip systems are limited to only two 60◦ dislocations on A (111̄) and B (111)
planes and one zigzag lip (Shimokawa et al., 2005).

After a relaxation calculation, the tensile deformation is included with a nominal
strain increment of 0.001 which is given to a unit cell length in the y-direction Ly

every 0.4 ps, then the atomic system is relaxed under the fixed Ly condition. Con-
sequently, the nominal strain rate is 2.5 × 109 s−1, and the unit cell length in the
x-direction Lx is changed under a pressure-free condition during the relaxation. The
temperature of the entire atomic system is controlled at room temperature, at 300 K.

2.3 Torsion of Iron Nanowire

The material models for the torsion problem of a nanowire are single-crystalline
iron in which interatomic interaction is introduced by a Finnis-Sinclair-type potential
(Finnis and Sinclair, 1984, 1986). Solid cylindrical wire with radius R is modeled,
as shown in Figure 1c. A twisted periodic boundary condition (TPBC) (Nakatani et
al., 2004) is used. The lateral dimensions Lx and Ly of the unit cell are assumed to
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be sufficiently larger than the diameter 2R of the wire, so that the periodic boundary
condition is assumed only in the z-direction, with dimension Lz, of the unit cell. In
the present study, the specimen having dimensions R = 10 nm and Lz = 20 nm
is considered. Two single crystal models are examined, in which 〈001〉 and 〈111〉
respectively are set as the twist axis (z-direction). The wire is twisted monotonically
by the increment of a specific twist angle �θ = 1.25 × 106 [deg/m], which is added
to the specific twist angle θ every 0.5 ps. The nominal surface shear strain γ0 = Rθ

is used to express the strain level. The system temperature is set to 300K during the
calculation.

2.4 Rolling of Iron Nanoplate

The basic computational procedures and material model are the same as for the tor-
sion problem, i.e., the materials of the nanoplate for the rolling problem are a single
crystalline iron in which interatomic interaction is introduced by a Finnis–Sinclair-
type potential. The model for nanoplate rolling is shown in Figure 1d. The specimen
consisted of a body center cubic lattice of Natoms α-iron atoms with a lattice con-
stant of a = 0.28665 nm. Rolling plane and rolling direction are (111) and [1̄ 1̄2],
respectively. The dimensions of a unit box, which is a rectangular parallelepiped in-
cluding six atoms, are �x = √

6 a, �y = √
2 a, and �z = √

3 a/2 in the x-, y-, and
z-directions, respectively. The specimen is composed of an arrangement of nxnynz

units, with dimensions lx = nx�x , ly = ny�y , lz = nz�z. Rollers with a radius of
R = 10 nm are modeled as rotating rigid bodies with an atomic arrangement on their
(111) surface. The atomic interaction between roller and specimen is assumed to be
a contribution to the pair potential term of the FS potential. The distance between
the upper and lower rollers h is adjusted for each specimen. The circumferential ve-
locity of the rollers is νrot = 1000 [m/s]. The parameters for Cases 1, 2, 3 and 4
are (nx, ny, nz, h) = (20, 10, 10, 1.6 nm), (20, 10, 20, 3.2 nm), (20, 20, 40, 6.4 nm)

and (80, 40, 40, 6.4 nm), respectively. The initial translational velocity ν0 of the spe-
cimen is set to νrot. The atomic velocity reduced by the average translational velocity
is rescaled to be equivalent to 300 K.

3 Results and Discussion

3.1 Tension of a Two-Dimensional Triangular Lattice System

The lattice constant obtained by the relaxation calculation at 500 K is 1.0095a0.
Figure 2a shows the relationship between tensile stress and nominal strain for each
model. Figures 2b, 2c and 2d show the deformed atomic arrangement at a nominal
strain of ε = 0.5 for Model 1, Model 2, and Model 3, respectively. In these figures,
the grayscale of atoms denotes the lattice rotation angle, α , which is calculated
using the relative coordinates to neighboring atoms. White atoms and black atoms
mean α ≤ −5◦ and α ≥ 5◦, respectively. Stress increases linearly up to the first
peak, which can be defined as a yield stress, for each model (see Figure 2a). After
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Fig. 2. (a) Stress–strain curves. (b), (c) and (d) Distribution of lattice rotation angle α between
initial state and ε = 0.5: (b) Model 1, 100.4 × 100.7 nm, 184,338 atoms, θ = 0. (c) Model 2,
113.8 × 109.5 nm, 226,890 atoms, θ = 15. (d) Model 3, 403.7 × 403.6 nm, 2970.608 atoms,
θ = 0. White and black represent α ≤ −5 and α ≥ 5, respectively.

that, the stress decreases suddenly. During this decreasing stress stage, many pairs
of dislocations are nucleated almost simultaneously. Then, the dislocations move in
the model. The peak stress of Model 1 is almost the same as that of Model 3, which
has the same crystallographic orientation as Model 1. These model a bi-slip system,
which initially has two equivalent slip systems. On the other hand, the peak stress of
Model 2, which has a nonsymmetric configuration is smaller than that of Model 1
and Model 3. The oscillating shape of the stress–strain curves is qualitatively similar
in each model and the curve of Model 1 quantitatively corresponds to that of Model
3. The temporal period, 120∼130 ps, is relatively large and this corresponds to the
change of mesoscopic structure of the dislocations caused by dislocation–dislocation
interactions, i.e., the fixation, separation, nucleation, annihilation, and mixture of

29



www.manaraa.com

A. Nakatani and T. Shimokawa

Fig. 3. (a) Stress–strain curves. (b) The number of defect atoms. Crystallographic orientation
of local fcc structures. (c) 80 ps at 300 K. (d) Relaxation of 20 ps at 900 K.

dislocations. There appear to be some domains that have the same rotation angle but
are not stabilized. There is no structure similar to a grain boundary. Consequently,
we conclude that no grain subdivision phenomena occur in such two-dimensional
triangular lattice systems.

3.2 Tension of Aluminum in Plane Strain

The stress–strain curve, the fraction of atoms in a perfect crystal or in the defects
(hexagonal closed-packing, hcp; body-center-cubic, bcc; and others), the atomic ar-
rangement at ε = 0.2, and the distribution of crystallographic orientation of tensile
axis on the standard stereographic triangle are shown in Figures 3a, 3b, 3c, and 3d,
respectively. The defect structure is detected by common neighbor analysis (CNA)
(Honeycutt and Andersen, 1987). In Figure 3b, dark-colored atoms means that they
are located in the defect.

After tensile deformation, the models are divided into many domains, surroun-
ded by the boundary of defect atoms (see Figure 3c). At an initial state, light-gray
stripes are marked horizontally (see Figure 1b), but these incline in some domains
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Fig. 4. Cross-sectional views after unloading. Defect atoms are colored black, and other colors
correspond to the crystallographic orientation of the twist axis in the unit triangle of the reverse
stereographic pole figure. (a) Single crystal in 〈001〉 torsion. (b) Single crystal in 〈111〉 torsion.
Cross-sectional views after unloading. Defect atoms are colored black, and the gray scale
corresponds to the atomic shear stress value. (c) Single crystal in 〈001〉 torsion. (d) Single
crystal in 〈111〉 torsion.

after the deformation. This means that crystallographic rotation occurs, and each do-
main separated by defect atoms corresponds to grains separated by a grain boundary.
However, investigating the atomic structure in detail shows that most grain boundar-
ies consist of an HCP atomic structure. Figure 3d shows that two dense distributions
of tensile axis appear near the [001] structure and [1̄11]. These show that the poly-
crystalline structure obtained consists of twin systems.

3.3 Grain Refinement of Single Crystal by Torsion

To investigate the deformed internal structure in detail, an unloading process is sim-
ulated in which the starting point of the unloading is γ0 = 1, and the process is
realized by the reverse twist to the torque-free state. Figures 4a and 4b show cross-
sectional views after the unloading. CNA is used and atomic sites are regarded as
belonging to bcc when more than 10 bcc-characteristic atoms are found among the
eight first neighbors and the six second neighbors. In these figures, undetermined
orientation atoms and lattice defect atoms, except for the bcc atoms, are indicated
by dark coloring, and the coloring of the bcc atoms shows the crystallographic ori-
entation of the twist axis, which is determined using the second neighbor atoms in
the unit triangle of the reverse stereographic pole figure. In Figures 4c and 4d, lattice
defect atoms are shown as dark, and the coloring for bcc atoms shows the distri-
bution of a cylindrical shear component τθz of residual stress. It is observed that a
polycrystal structure develops near the surface in the cases of a twisted single crys-
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Fig. 5. Torque versus twist curves for single crystals. Torque value is converted to a repres-
entative value having the dimension of stress multiplied by a factor of 2/πR3, and twist is
expressed by nominal surface strain γ0 = Rθ . Shear stress versus twist curves for (a) single
crystal in 〈001〉 torsion, and (b) single crystal in 〈111〉 torsion.

Fig. 6. Temporal change of potential energy.
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tal (Figures 4a and 4b). Defect atoms are highly concentrated around the center of
the twist axis in the case of 〈001〉 torsion, but the elastic core, which drags in some
dislocations, remains around the twist axis in the case of 〈111〉 torsion. Twin bound-
aries and low-angle grain boundaries, which consist of a grain boundary dislocation
array, are also observed. A large stress gradient is observed around the dislocations
(see Figures 4c and 4d). Figure 5a shows the torque versus twist curves. The torque
is calculated as the resultant moment of the transverse shear component of atomic
stress (τα)θz around the torsion axis. Anisotropy in the maximum torque is signific-
ant in the cases of a single crystal, and the maximum torque in 〈001〉 torsion is two
and a half times larger than in 〈111〉 torsion. The torque in 〈001〉 torsion monoton-
ically decreases after γ0 = 0.2, but an oscillation is observed in 〈111〉 torsion. In
both cases, the torque is almost constant within the range γ0 � 0.5, and the value of
torque standardized by a factor of πR3/2 is approximately 4 GPa.

The average shear stress τθz in an annular ring is shown as a function of twist in
Figures 5b and 5c. In the elastic deformation range, the shear stress monotonically
increases as the radial coordinates r increase, except for the value in a few layers
near the outer surface, in which the stress value is almost independent of r . Since
inelastic deformation occurs near the surface and it decreases toward the interior,
the peak stress of the interior annular ring is smaller than for the outer ring. The
average stress distribution in the annular rings with different radial coordinates r

becomes uniform, and the value is almost constant at 3 GPa during the deformation
after r0 = 0.4, in every model.

3.4 Rolling of Iron Nanoplate

Figure 6 shows the temporal change of potential energy. The reduction ratio is ap-
proximately 50% in each case. Therefore, the value of potential energy divided by
the initia cross-sectional area lx lz is shown. Figure 7 shows a snapshot of the atomic
arrangement, which is evaluated by averaging rom 0.4 ps before the indicated time
to the indicated time. The atoms that are determined to have a bcc structure by CNA
are colored with the color that corresponds to the location of the normal vector of the
plate surface on the stereographic triangle, and the atoms that are detected as defects
are shown in black with a smaller radius. For Case 1, homogeneous deformation
is realized, but the thickness of the plate is too small to retain the crystallographic
structure (see Figure 7a). The material obtained is amorphous and there is no bcc
structure after the deformation. On the other hand, for the grains that have different
orientations from that of the initial specimen, polycrystallization occurs in Cases 2,
3, and 4. In the initial stage, the deformation near the surfaces precede to the center,
and two bump profiles are observed in the side view. In the top view, an enlarge-
ment of the width of the plate is observed. For this orientation of specimen, the ratio
(b − ly)/ ly is relatively large, approximately 20% in the experiment. The elongation
of this simulation is the same as in the experiment. A comparison of Figures 6 and
7, shows that the curves for the stage in which the specimens are inserted symmet-
rically are identical. For Cases 1, 2, and 3, in which the rolling process is complete,
the potential energy decreases slightly but is maintained constant after rolling. Ex-
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Fig. 7. Atomic arrangement and crystallographic orientation of grains.

cept for the final stages, when the rotation due to asymmetric shear deformation is
significant, the rolling process is steady and the thickness of rolled plate is almost
constant. There is no significant recrystallization after rolling. Except for the final
stages, when the rotation due to asymmetric shear deformation is significant, ther-
olling process is steady and the thickness of rolled plate is almost constant. There is
no significant recrystallization after rolling.
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4 Conclusions

Remarkable polycrystallization is observed in the twisting and rolling problems,
compared to the tension problem. From the results of a series of analyses it is con-
cluded that the strain gradient plays an important role in grain subdivision. The
results of the polycrystallization and reorganization processes in such miniaturized
models should not be compared directly with macroscopic phenomena. However, we
can study the deformation mechanism under nonuniform stress or strain distribution
using an analogous scaled-down model of an actual system.
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Abstract. Nanocomposite coatings characterized by superhardness exhibit unique micro-
structures and deformation mechanisms at the nanometre scale. Based on the studies of nano-
indentation size effect, we show that dislocation-based deformation is gradually replaced by
grain-boundary mediated deformation as the hardness of coatings increases, especially for
coatings approaching superhardness. The measured hardness of a superhard coating expo-
nentially increases with the decrease of indentation depth, and its intrinsic hardness can be
exactly determined by the analysis of indentation size effect. The optimal conditions extrac-
ted from acoustic emission signals from scratching superhard nanocomposite coatings are in
good agreement with nanoindentation and drilling tests. In the optimal regime, it is the com-
petition between different deformation mechanisms that results in the origin of superhardness
in self-organized microstructures of nanocomposite coatings.

Key words: superhard coatings, nanoindentation, size effect, acoustic emission

1 Introduction

With the rapid development of synthesis, fabrication and testing techniques, there has
been much interest in the search for nanostructured materials, especially for novel,
superhard coatings defined as those with Vickers hardness H ≥ 40 GPa. This is
driven not only by scientific curiosity, but also by their wide engineering applica-
tions, from cutting and polishing tools to wear-resistant coatings. Compared to hard
materials, there are only a few superhard materials, such as cubic boron nitride and
diamond with hardness H ≈ 70–100 GPa that are believed to be the hardest known
materials available in nature. Unfortunately, even diamond has limitations, which is
not effective for cutting steels and some alloys owing to the high solubility of carbon.
Hence, it is not surprising that many efforts have been devoted to develop superhard
nanocomposite coatings in recent years [1–5].
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Superhard nanocomposite coatings comprise two or more phases that are either a
nanostructured phase embedded in another amorphous phase, such as nanocrystalline
(nc-)TiN and amorphous (a-)Si3N4 (nc-TiN/a-Si3N4), or two nanocrystalline phases
such as nc-TiN/BN. Recent investigations reveal that, in the optimal deposition con-
ditions, these coatings possess an unusual combination of mechanical properties, and
their hardness can reach 40 to 100 GPa. However, it was criticized and even doubted
that the high hardness values reported might be caused by possible artefacts in syn-
thesis and/or measurements, for example, biaxial compressive stresses caused by
physical vapour deposition, indentation size effect, etc. [6–8]. The reason for debate
is partially attributed to the lack of a better basic understanding of the implications of
hardness and intrinsic superhardening mechanisms of these nanocomposite coatings.

Unlike the elastic modulus and strength, hardness does not have an unambiguous
definition. Broadly speaking, hardness is a measure of the capability of a material
against imprinting or scratching with another hard material, such as diamond, which
microscopically corresponds to the resistance against local plastic deformation due
to the creation and movement of dislocations. The debate caused by this relative and
ambiguous definition for hardness becomes more serious in nanocomposite coatings
possessing superhardness. To our best knowledge, there is still a lack of system-
atic study. Thus, to design new superhard materials, it is imperative to understand
their underlying deformation mechanisms and the origin of superhardness, that is,
what makes superhard nanocomposite coatings unique [7]. In this paper, studies are
made by using nanoindentation and scratch tests of several hard and superhard nano-
composite coatings such as AlN, Ti-B, and nc-TiN/a-Si3N4. Based on the analysis
of indentation size effect and acoustic emission signals due to scratching, plausible
superhardening mechanisms in these coatings are discussed.

2 Nanoindentation Size Effect

From a well-accepted definition, the indentation hardness of a material is given by

H = Pmax

A
, (1)

where Pmax is the maximum load and A is the surface or projected area of a re-
maining impression. The nanoindentation method for measuring hardness and elastic
modulus, introduced by Oliver and Pharr [9], has been widely used in the character-
ization of mechanical properties of materials at small scales. Without the need to im-
age the indent impression, hardness and elastic modulus can be determined directly
from indentation load and displacement curves, as illustrated in Figure 1. In nanoin-
dentation tests, three important quantities are measured from the load-displacement
curves: maximum load Pmax, maximum displacement hmax, and elastic (or unload-
ing) contact stiffness S = dP/dh, see the inset of Figure 1. Once the contact area
is determined, the hardness can be easily estimated from Equation (1). Here, the
so-called indenter shape function, A = F(hc), must be carefully calibrated by inde-
pendent measurements using standard samples such as fused silica (E = 72.0 GPa
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Fig. 1. Nanoindentation load-displacement curves for AlN coatings, where the inset is a
schematic illustration of indentation load-displacement data with three important measured
parameters.

and ν = 0.17), where hc = (hmax − εPmax/S) and ε is a constant relevant to the
indenter. Modulus follows the relationship

Er =
√

π S

2β
√
A

, (2)

where β = 1.05 is a dimensionless correct parameter and Er is the reduced or effect-
ive elastic modulus defined as 1/Er = (1−ν2)/E+(1−ν2

i )/Ei , with Young’s mod-
ulus E and Poisson’s ratio ν for the specimen and elastic constants Ei = 1141 GPa
and νi = 0.07 for the diamond indenter [9, 10].

Nanoindentation tests largely facilitate the measurement of mechanical proper-
ties at small scales. It seems, however, not so easy to obtain the intrinsic hardness
and elastic modulus of a nanocomposite coating. Many factors may affect the meas-
ured results of hardness and elastic modulus, which include external factors such
as indenter geometry, tip rounding, machine compliance, etc.; and material-related
factors such as the surface roughness, indentation size effect, residual stress, coating
thickness, substrate, etc. [6–10]. To avoid the effect of a substrate on the hardness
of a coating, the maximum indentation depth should not exceed ∼10% of the coat-
ing thickness according to a rule-of-thumb criterion [4]. Therefore, the indentation
size effect, that is, an increase in hardness with decreasing indentation depth, must
be considered carefully when measuring the intrinsic hardness of a nanocomposite
coating that is a few micrometers thick.
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Fig. 2. Hardness versus indentation depth for AlN coatings. The dotted line is the fitted result
by using Equation (3) and the inset displays the data as a plot of H 2 versus 1/h.

2.1 AlN Coating

The interest in nano-structured aluminium nitride (AlN) as thin films or coatings
in microelectronic devices and optical sensors originates in their specific proper-
ties such as high melting point, chemical stability, high thermal expansion, etc.
[11]. By using reactive close-field unbalanced magnetron sputtering, nano-structured
AlN coatings (∼1 µm thick) were deposited onto silicon (111) or M42 high-speed-
steel substrates at room temperature [12]. Figure 1 shows typical indentation load-
displacement curves subject to different maximum loads from 500 to 4500 µN. Ac-
cording to the Oliver–Pharr method, the measured hardness H versus indentation
depth h is shown in Figure 2.

It is noticed that large strain gradient inherent in small indentation leads to geo-
metrically necessary dislocations [13]. Using this concept, Nix and Gao [14] have
indicated that the indentation size effect of crystalline materials can be described by
the following expression for the depth (h) dependence of the hardness H :

H

H0
=
√

1 + h∗
h

, (3)

where H0 is the hardness in the limit of infinite depth and h∗ is a characteristic length
that depends on the shape of the indenter, the shear modulus and H0. As displayed in
the inset of Figure 2, the indentation size effect of hardness of AlN coatings is well
fitted by Equation (3). The intrinsic hardness value H0 = 20.04 GPa, which agrees
well with the value reported for single-crystal AlN [11], and the characteristic length
h∗ = 16.66 nm, which is a little bigger than the grain size (∼10 nm) of AlN coatings.
Similar to TiN coatings under the same testing conditions, AlN coatings have high
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elastic recovery (about 80% or more), and their elastic modulus, Er = 245 GPa (E =
327 GPa), were estimated by Equation (2). The high elastic response of AlN coatings
makes the measurement of hardness difficult; however, their intrinsic hardness can
be well predicted by the analysis of indentation size effect for crystalline materials
based on the concept of geometrically necessary dislocations.

2.2 Ti-B Coating

It is obvious that, based on Equation (3), the large value of intrinsic hardness H0
would cause h∗ to be very small, and the hardness of a coating depends weakly on
the depth at a given level of indentation. Recent nanoindentation tests of Ti-Al-N thin
films (H0 ≈ 35 GPa) showed that, however, the indentation size effect of hardness
clearly exists, which cannot be described or fitted by Equation (3). As the intrinsic
hardness of coatings increases, the indentation size effect becomes more serious. As
shown in Figure 3, the measured hardness of Ti-B coatings increases exponentially
as the indentation depth decreases, this can be well fitted by

H = H0 + H ′ exp(−h/h∗), (4)

where H0 and h∗ have been earlier defined and H ′ is a constant. For Ti-B coatings,
the fitted parameters are: H0 = 70.07 GPa, h∗ = 116.28 nm, and H ′ = 115.94 GPa.
The estimated value of intrinsic hardness is consistent with that of the depth-
independent hardness. It is also observed that the influence of a substrate on the
hardness of Ti-B coatings exists even if the maximum indentation depth is less than
10% of the thickness of the coatings. Similar behaviour was also discovered in the
tests of Ti-Al-N thin films [15].

Further study on nanoindentation of Ti-B and Ti-Al-N coatings excluded that the
indentation size effect in Figure 3 is due to the influence of surface roughness, which
can be described by a formula like: H = H0 + C/h, where C is a constant [16].
Thus, there exist some new deformation mechanisms rather than dislocation pile-ups,
which are responsible for the deformation processes of superhard nanocomposite
coatings.

3 Statistical Analysis of Acoustic Emission Signals

In addition to nanoindentation, scratch is another simple and convenient method to
evaluate the integrity of superhard nanocomposite coatings. It is well-known that the
tribological properties of coatings are rather complicated, and influenced by many
factors over multi-scales, such as dislocation pile-ups, cracking, delamination, buck-
ling, etc. [17]. However, the influence of these factors can be directly monitored by
acoustic emission (AE) sensors because the creation and movement of dislocations
or cracks result in a sudden change in stress or displacement within a solid in the
form of elastic waves with ultrasonic frequency.

Standard scratch tests of superhard nc-TiN/a-Si3N4 coatings deposited onto
M42 high-speed-steel substrate were performed. A Rockwell C diamond indenter
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Fig. 3. Hardness versus the ratio h/tc of indentation depth h and thickness tc = 4 µm for Ti-B
coatings, data taken from [7]. The inset displays the data as a plot of log10(H − H0) versus
h/tc, where the dotted line is the fitted result by using Equation (4).

(200 µm in tip radius) was drawn across the coating surface at a constant velocity
of 10 mm min−1 while increasing the load from 10 to 70 N at a constant rate of
100 N min−1. Experiments showed that, with time the fluctuation of friction force
increases and the first derivative of AE becomes rougher. There are two time scales
in this process: the characteristic relaxation time τ and the measuring time T . Their
ratio, i.e. the Deborah number De = τ/T � 1, implies that the coating subjected
to scratching exhibits a “liquid-like” behaviour. This can be easily described by a
stick-slip process that occurs in most sliding friction phenomena from macroscopic
to atomic scales. For simplicity, it is assumed that the stress level in a coating can
be described by a scalar value, σ(t), which increases deterministically between AE
events and which is released stochastically as a Markov process. Thus, the evolution
of stresses is given by

σ(t) = σ(0) + ρt − S(t), (5)

where σ(0) is initial stress level, ρ is external loading rate, and S(t) = �Si(t | ti <

t) is accumulated stress release from events within the region over the time period
(0, t), where ti , Si are the origin time and stress release associated with the i-th
AE event, respectively [18]. The value of stress release during an AE event can be
estimated from its magnitude m, in the unit of decibel (dB), in terms of the empirical
formula

m = 10 log10 A + m0, (6)

where A is relative strength of an AE signal, such as power, voltage, etc., m0 is a
reference magnitude. Here, the stress drop is roughly considered to be proportional to
the power, i.e., S ∼ A, and m0 = 60 dB (the noise level of normal conversation) was
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Table 1. Calculated AIC values and the fitted parameters.

Samples N � AIC �AIC/N t0 S0 η

Without heating 156 –1.703 –0.0109 0.63 0.58 0.19
400◦C 81 2.301 0.0284 0.71 1.96 0.99
500◦C 130 0.035 0.0003 0.60 1.00 0.27
600◦C 161 0.413 0.0026 0.43 0.62 0.19

used in subsequent analysis. The substance of results is not sensitive to the choice of
m0.

The intensity of an AE event occurrence is controlled by a risk function ψ(σ),
which increases nonlinearly with the stress level. The simplest choice of ψ(σ) is
taken as an exponential function, ψ(σ) = exp(µ + νσ), where µ and ν repres-
ent the background and the sensitivity to risk, respectively. This is a comprom-
ise between regular (time-predictable) and pure random (Poisson) processes [18–
20]. Let us further assume that the size distribution of AE events is independent
of the stress level, and then the AE signals in scratch tests can be treated as a
marked point process in time-stress space with the conditional intensity function,
λ(t) = ψ[σ(t)] = exp{α + ν[ρt − S(t)]}, where α [= µ + νσ(0)], ν, and ρ are the
parameters to be fitted. To remove the influence of sample sizes (the number of AE
events), a scale-free sensitivity to risk can be rewritten as

λ̄(t) = λ(t) exp(−α) = exp{η[t/t0 − S(t)/S0]}, (7)

where η = νS0, t0 = S0/ρ, S0 = �Si/N and N is the number of AE events over
the interval (t1, t2). Estimates of these parameters are found by maximizing its log-
likelihood. The comparison between two models is based on the Akaike information
criterion (AIC), that is, AIC = −2 ln L̂+2k, where ln L̂ and k are the maximum log-
likelihood and the number of parameters for a given model [21]. This represents an
approximate way of compensating for the effect of adding parameters, and is a useful
heuristic measure of the relative effectiveness of different models. For example, in
comparing the stick-slip model with three parameters against the Poisson model with
only one (ν = ρ = 0), the former must demonstrate a significantly better fit to justify
additional parameters. The relative effectiveness of two models in fitting AE data can
be identified if the difference of their AIC values (i.e. � AIC = AICp − AICs ) is
larger than 2, where AICp and AICs are the AIC values of the Poisson model and
stick-slip model [19–21].

As listed in Table 1, let us take the Poisson model (random process) as a refer-
ence, it is obvious that the stick-slip model fits AE data better than the Poisson model
at 400◦C deposition temperature since the difference of AIC values is substantial, i.e.
� AIC > 2. However, such a direct comparison might be misleading, as coatings de-
posited at different temperatures yield different numbers of AE events (see Table 1).
To allow for this effect, we use the indicator, � AIC/N , as a measure of the improve-
ment in performance which is approximately independent of sample sizes. The same
nonlinear changing order (400◦C, 600◦C, 500◦C, and without heating) is obtained,
and the best fitting is still the case of 400◦C. Here, the larger the ratio of � AIC/N ,
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Fig. 4. Risk level (the number of events per second) versus time calculated by the fitted para-
meters in Table 1. For comparison, AE events with magnitude m ≥ 60 dB are also plotted
[22].

the better the AE data is fitted by the stick-slip model relative to the Poisson model,
and the more stable or optimal the coating. The fitted parameters in Equation (7) are
also set out in Table 1, and the intensity function versus time for each deposition
temperature is shown in Figure 4. For a given stress release S0, the larger the value
η, the higher the sensitivity to risk ν (η = νS0). The results also indicate that the
coating deposited at 400◦C is more stable than those in the other three cases.

Some caution should be noted because this method is, after all, a post-mortem
examination. We cannot overestimate its role and rush to conclusions before ex-
perimental calibrations. Nanoindentation experiments showed that the coating (8.6
at. % Si) deposited at 400◦C possessed the hardness of 50.9 GPa, which indeed
was larger than those with the same composition but deposited at different tem-
peratures. Furthermore, wear testing on these coatings was assessed. The drills
coated with nc- TiN/a-Si3N4 deposited at 25◦C (without heating), 400◦C, 500◦C,
and 600◦C drilled 78, 352, 120, and 225 holes, respectively. For comparison, the
drill coated with TiN (H ≈ 20 GPa), a commonly used hard coating, drilled 107
holes. Here, it is of interest to scrutinize the AE data at 400◦C, the optimal de-
position temperature obtained by both statistical analysis and real tests. The results
show that the magnitude-frequency distribution of AE events follows the formula,
log10 N(> m) = −km + const. with k = 0.026 ± 0.001. Base on the magnitude
definition of AE in Equation (6) and the assumption of the energy released in an
AE event E ∼ A, a power-law distribution, P(> E) ∼ E−10k is obtained. How-
ever, as deposition temperatures increase or decrease relative to this optimal value,
the energy frequency of AE events rapidly deviates from the power-law distribution
[22].
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Fig. 5. Illustration of hardness (or yield strength) versus grain size, where deformation is medi-
ated by dislocation pile-ups (coarse-grains) and grain boundaries (nano-grains), respectively.
The Hall–Petch relationship works well for coarse-grained materials, where dc is a character-
istic length.

4 Discussion and Conclusions

Computer simulations show that plastic deformation in nanocrystalline materials can
be accommodated by grain-boundary mechanisms such as sliding when the size of
grains is below ∼10 nm. As grains are reduced to the nanometre scale, the percentage
of grain boundary atoms increases rapidly (about 10% of atoms are located at grain
boundaries for a sample with grain diameters of 20 nm) [23, 24], and bulk nanocrys-
talline metal has softening behaviour. Compared to coarse-grained crystalline metals,
dislocation sources and pile-up are hardly expected to exist in such a material and
deformation is believed to be carried mostly by grain boundaries via plastic slid-
ing (see Figure 5). Thus, it is not surprising that there exhibit different indentation
size effects. In fact, Equation (3) based on geometrically necessary dislocations is a
typical kind of complex scaling, which is consistent with the long-range stress field
of dislocations. The exponential increase of hardness as the decrease of indentation
depth in coatings such as Ti-B, as indicated in Equation (4), just identifies this trans-
ition of deformation mechanisms. Thus, the intrinsic hardness of hard and superhard
coatings can be exactly determined by the analysis of their indentation size effects.

In superhard nanocomposite coatings like nc-TiN/a-Si3N4, the nc-TiN phase is
sufficiently hard to bear the load whilst the a-Si3N4 phase provides structural flexibil-
ity, in which further increase in hardness requires blocking of grain-boundary sliding
by optimal design of their microstructures [25]. In fact, it is due to the competi-
tion between different deformation mechanisms in nanocrystalline grains and along
amorphous boundary (stick-slip) that a steady self-organized nanostructure with pe-
culiar properties (superhardness) can be formed. This may be a possible reason why
AE events due to scratching occur over many scales when the nanostructure of coat-
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ings lies in an optimal state. In the self-organized nanostructure for superhard coat-
ings, three correlative conditions should be met: higher bond density or electronic
density, shorter bond length, and greater degree of covalent bonding [26].

In summary, the vast range of influence factors in nanocomposite coatings pre-
cludes a purely Edisonian (or cooking) approach to identifying promising composi-
tions, it is simply too time-consuming and costly. The most rapid progress will prob-
ably be made by using systematic investigations on the superhardening mechanisms
of nanocomposite coatings. The power-law frequency-magnitude distribution of AE
energy at optical deposition conditions implies that the understanding of its beha-
viour relies on only a few emergent material parameters as being done in the model.
As we have seen that, optimal information, such as Si contents, deposition temper-
atures, etc., in nc-TiN/a-Si3N4 coatings can be extracted from crackling noise by a
simple stick-slip model. The results provide us some valuable clues for the under-
standing of superhardening mechanisms of nanocomposite coatings, and further for
the tailoring of new nanostructural materials.
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Abstract. In this paper, a fundamental framework of micromechanics for predicting the ef-
fective properties of a composite is generalized to include the interface energy effect. In this
framework, both the interface constitutive relations for multi-phase hyperelastic solids at finite
deformation and the Lagrangian and Eulerian descriptions of the generalized Young–Laplace
equations are presented. Then, by taking into account the change of the “residual” elastic field
due to the change of configuration, the difference of the governing equations across the inter-
face is derived. A discussion of the infinitesimal deformation approximation of these govern-
ing equations is also given, and analytical expressions of the size-dependent effective moduli
of a particle-filled nanocomposite are obtained. It is shown that the liquid-like interface ten-
sion influences the effective properties of the nanocomposite. Thus some misunderstandings
of the interface energy effect in the existing literature are clarified.

Key words: micromechanics, interface effects, size-dependent effective properties, nano-
composites.

1 Introduction

The effect of surface/interface energy on the elastic fields and the mechanical prop-
erties of nano-size structures and nanocomposites becomes important due to their
large ratio of surface/interface to volume. Therefore, the study of this effect has at-
tracted considerable attention of researchers in materials science and mechanics for
many years (e.g. Shuttleworth, 1950; Gurtin and Murdoch, 1975; Gumbsch and Daw,
1991; Nix and Gao, 1998; Müller and Saúl, 2004; Sun et al., 2004). The interest
in this subject has intensified recently (e.g. Cuenot et al., 2004; Duan et al., 2005;
Shenoy, 2005; Dingreville et al., 2005). However, it should be noted that the inter-
face models can be classified into two categories. The first one can be viewed as an
approximation of a thin interphase when the interphase thickness approaches zero. It
was shown that a thin and stiff interphase can be approximated by the equivalent in-
terface stress model (Benveniste and Miloh, 2001; Hashin, 2002; Wang et al., 2005).
The second one considers the difference of the atomistic microstructures between the
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Fig. 1. Stress-free configuration κ∗ and self-equilibrium configuration κ0.

surface/interface and the bulk material. Hence there is excess surface/interface free
energy. This can be described by an interface energy model. Although in both the
interface stress model and the interface energy model, the tractions across the inter-
face are discontinuous, and the constitutive relations of the interface are needed, yet
there is no interface-induced elastic field in the former, whereas there is an interface-
induced elastic field in the latter. In this paper, only the interface energy model will
be discussed.

Generally, creating a free surface or an interface by bonding two different me-
dia together will generate excess surface/interface free energy and a surface/interface
stress. Thus, for a multi-phase material, there should exist an intrinsic elastic field (or
“residual” elastic field) induced by the surface/interface energy even when it is not
subjected to any external body force and boundary traction. This renders the mechan-
ical response of such a material under external loading inevitably dependent upon the
deformation generated both by the intrinsic elastic field and by the applied external
loading. In this paper, a fictitious stress-free configuration is introduced to facilit-
ate a better understanding and to solve elastic problems involving surface/interface
energy effect. Then it can be shown that all the field equations, including the gen-
eralized Young–Laplace equations, can be obtained from the stationary condition of
a new functional. Unlike previous studies in the literature, the hyperelastic poten-
tial in the functional depends upon not only the deformation gradient caused by the
external loading, but also the intrinsic elastic field. The latter reflects an intrinsic
physical attribute of a multi-phase material containing surfaces/interfaces.

2 Basic Concepts in Interface Energy Models

2.1 Surface/Interface Energy-Induced Elastic Field

In order to study the effect of surface/interface energy, we consider an infinite elastic
medium as shown in Figure 1a. The position vector of a material point in the medium
is represented by X∗. The medium is stress-free, when there is no external loading.
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This stress-free configuration is denoted by κ∗. Suppose that there is a spherical re-
gion �∗ with a boundary ∂�∗ and radius R∗. If this region is removed from the
medium, then the original spherical region �∗ will become a void, denoted by �,
with a radius R and boundary ∂�. (Here, we assume that the material is homogen-
eous and isotropic from a continuum point of view.) The material point X∗ will move
to X. As the microstructure (at the atomic-molecular level) of the material at ∂� will
be different from that of the interior region away from the boundary, there will be
surface energy and surface stress γ ∗

0 at ∂�. In terms of the Young–Laplace equa-
tion, the normal traction at the boundary of the void is σr = 2γ ∗

0 /R. Therefore, the
stresses in the matrix are no longer zero. This self-equilibrium state is denoted by
configuration κ0.

Therefore, due to the existence of the surface/interface, there are not only the sur-
face/interface energy but also the elastic field induced by the surface/interface energy,
even there is no external loading. For the sake of expediency, we call this elastic field
the “residual field”. Obviously, it is different from the residual stress field in plas-
ticity and in continuum theory of distributed dislocations where the strain field is
incompatible. In addition, we will call the configuration κ∗ the fictitious stress-free
configuration, and specifically take the configuration κ0 as the reference configur-
ation. Although, in continuum mechanics, any configuration can be chosen as the
reference configuration, yet in this paper, the reference configuration will specific-
ally refer to κ0 with no external loading, but with the elastic field induced by the
surface/interface energy.

2.2 Fictitious Stress Free Configuration

The above elastic field induced by the surface/interface energy can be depicted in
terms of the deformation gradient F∗ = ∂X/∂X∗ from the stress-free configuration
κ∗ to the reference configuration κ0. The reason why the configuration κ∗ is referred
to as the fictitious stress-free configuration is that the atomistic microstructure of the
material at and adjacent to the surface/interface is required to be the same as that of
the interior of the material. In general, this condition cannot be fulfilled in reality;
thus it is only a fictitious one. Suppose that there is an interface dividing materi-
als 1 and 2. If the two materials are separated at the interface, the two materials will
form two new surfaces A

(1)
0 and A

(2)
0 , respectively, and these two new surfaces will

in turn have surface energies. This is what happens in reality, and the configuration
corresponding to the separated materials is not the fictitious stress-free configura-
tion. The fictitious stress-free configuration is one where the atoms at the surfaces
A

(1)
0 and A

(2)
0 would have the same environments as their respective counterparts in

the interior regions of the two materials. Then the two fictitious surfaces so obtained
(imaginarily) are denoted by A

(1)∗ and A
(2)∗ , respectively, and the corresponding con-

figuration is referred to as the fictitious stress-free configuration.
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2.3 Calculation of Total Free Energy

Now we consider a multi-phase hyperelastic medium. The hyperelastic potential is
denoted by ψ(X; C), where X is the position vector and C is the right Cauchy–
Green tensor. Moreover, it can be assumed that ψ = 0 when C = I, if there is no
interface energy. For an isothermal process, ψ is actually the Helmholtz free energy.
Next, we consider the case with the interface energy. If, in the deformed (current)
configuration, the free energy per unit area is γ , then what is the total free energy
of this multi-phase medium? In the literature, the total free energy is usually ex-
pressed as

∫
A0

J2γ dA0 + ∫V0
ρ0ψ(X,C) dV0. However, as discussed in the above

expositions, even there is no external loading, that is, C = I, there may exist an
elastic field induced by the interface energy such that ψ 
= 0. Therefore, if we take
into account the residual elastic field, the total free energy should be expressed as∫
A0

J2γ dA0 + ∫V0
ρ0ψ(X, C̃) dV0, where C̃ = F∗T · C · F∗ is not only dependent

upon C , but also upon the deformation gradient F∗ from the fictitious stress-free con-
figuration κ∗ to the reference configuration κ0. Thus, the necessity and importance
of the introduction of the fictitious stress-free configuration are explained.

2.4 Effect of Surface/Interface Energy on Mechanical Properties of
Composites

During the deformation process of a multi-phase hyperelastic medium, the size and
shape of the interface(s) will change, and so do the interface stress and the curvature
tensor of the interface(s). Thus the interface energy-induced elastic field will also
change. Generally, we are not interested in the elastic field in a particular con-
figuration; instead, we are usually concerned with the change of the elastic field
from one configuration to another. The change of configuration is a problem of fi-
nite deformation. Therefore, the governing equations taking into account the sur-
face/interface effect should be established within the framework of finite deforma-
tion in the first place, especially the constitutive relations of the interface and the
generalized Young–Laplace equations. Then the infinitesimal deformation analysis
can be derived. In this way, the surface/interface effect can be better considered. The
analyses in the literature that are based upon one configuration or adopt the infin-
itesimal deformation approximation in the first place cannot take into account the
effect of the residual surface/interface stress. For example, from these analyses, it
is believed that the liquid-like constant surface tension does not affect the effective
elastic constants of heterogeneous materials. However, as will be shown below, this
constant surface tension will influence the effective properties when the governing
equations are established within the framework of finite deformation and then, these
equations are reduced to the infinitesimal deformation case.
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3 Constitutive Relations of Interface at Finite Deformation and
Generalized Young–Laplace Equations

The mechanical response of the interface from the reference configuration κ0 to the
current configuration κ can be described by the constitutive relations of the interface.
Suppose that the covariant base vectors in the tangent plane of the interface at a rep-
resentative point X in κ0 are denoted by Aα (α = 1, 2). After deformation, the point
X moves to x, and these base vectors become aα (α = 1, 2) so that the deformation
gradient of the interface can be defined as FS = aα ⊗ Aα, where Aα (α = 1, 2) are
the contravariant base vectors in the tangent plane in κ0. Accordingly, we can define
the right Cauchy–Green tensor CS = FT

S · F, and the right and left stretch tensors US

and VS of the interface. Moreover, suppose that γ is the function of CS . Then, as for
the usual three-dimensional case, we can also define the Piola–Kirchhoff stresses of
the first and second kinds SS and TS , and the Cauchy stress σ S of the interface. These
stresses can be expressed as the functions of the interface free energy γ (Huang and
Wang, 2006)

SS = 2FS · ∂(J2γ )

∂CS

, (1)

TS = 2
∂(J2γ )

∂CS

, (2)

σ S = 1

J2
FS · TS · FT

S , (3)

where J1 = trUS = trVS, J2 = detUS = detVS . It should be emphasized that the
above relations are for generally anisotropic interfaces, and they can also degenerate
into the isotropic case. It is well known that the material symmetry (e.g. the isotropic
interface) requires specification of a reference configuration. Here, the anisotropic
(or isotropic) interface is specified to be relative to κ0, since any discussion on the
constitutive relations of the surface/interface based on the fictitious stress-free con-
figuration will be meaningless. For an isotropic interface, formulae (1) and (3) can
be written as

SS = J2FS ·
[
∂γ

∂J1
U−1

S +
(
J2

∂γ

∂J2
+ γ

)
C−1

S

]
, (4)

σ S = ∂γ

∂J1
VS +

(
J2

∂γ

∂J2
+ γ

)
1(x), (5)

where 1(x) is the second-rank identity tensor in two-dimensional space.
It can be proved that the generalized Young–Laplace equations, both in Lag-

rangian and Eulerian descriptions, can be derived from the stationary condition of a
new energy functional proposed by Huang and Wang (2006). They are

A3 · [S0] · A3 = −SS : b0

(on the interface in κ0)

P0 · [S0] · A3 = −SS · ∇0S

(6)
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a3 · [σ ] · a3 = −σ S : b

(on the interface in κ)

p · [σ ] · a3 = −σS · ∇S,

(7)

where S0 and σ are the Piola–Kirchhoff stress of the first kind and the Cauchy stress
in the bulk material, respectively, the square bracket denotes the difference of the
quantity across the interface, A3 and a3 are the unit normal vectors to the interface
in the reference and current configurations, respectively, P0 = I − A3 ⊗ A3, p =
I − a3 ⊗ a3, ∇0S and ∇S denote the surface gradients, and b0 and b are the curvature
tensors in κ0 and κ , respectively.

4 Infinitesimal Deformation Analysis

In order to obtain analytical expressions of the size-dependent effective moduli
of a nanocomposite, infinitesimal deformation approximations are usually needed.
However, as mentioned above, the boundary-value problems involving the sur-
face/interface energy effect should be formulated in the framework of finite deform-
ation in the first place. This is because even in an infinitesimal deformation analysis,
the Piola–Kirchhoff stress of the first kind SS and the Cauchy stress σ S of the in-
terface are not the same, as will be seen in Equations (9) and (10). This situation
is completely different from that in three-dimensional problem without the interface
energy effect. For simplicity, let us consider an isotropic interface in the following.
To this end, denote

γ
∣∣
J1=2
J2=1

= γ0,
∂γ

∂J1

∣∣∣∣J1=2
J2=1

= γ1,
∂γ

∂J2

∣∣∣∣J1=2
J2=1

= γ2, γ ∗
0 = γ0 + γ1 + γ2. (8)

Then, the quantity

J2

(
∂γ

∂J1
+ J2

∂γ

∂J2
+ γ

)
can be approximated by γ ∗

0 + (γ ∗
0 + γ ∗

1 )tr ES , where ES is the infinitesimal strain
of the interface, and γ ∗

1 is another material parameter related to the interface energy
γ . The Piola–Kirchhoff stress of the first kind and the Cauchy stress of the interface
can be expressed as

SS = γ ∗
0 10 + (γ ∗

0 + γ ∗
1 )(tr ES)10 − γ ∗

0 ∇0S ⊗ u + γ1ES, (9)

σ S = γ ∗
0 10 + γ ∗

1 (tr ES)10 + γ1ES, (10)

where 10 is the second-rank identity tensor in the tangent plane in κ0. It is seen that
even under infinitesimal deformation, for an isotropic interface, there are three inde-
pendent material parameters: γ ∗

0 , γ1 and γ ∗
1 , where γ ∗

0 corresponds to the residual
interface stress in the reference configuration κ0. If the displacement gradient of the
interface ∇0S ⊗ u is a symmetric second-order tensor in two-dimensional space, SS

can then be formally written as
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SS = γ ∗
0 10 + λS(tr ES)10 + 2µS ES, (11)

where

λS = γ ∗
0 + γ ∗

1 , 2µS = −
(
γ0 + ∂γ

∂J2

∣∣∣∣J1=2
J2=1

)
.

It is interesting to note that in most cases, µS is negative since γ0 is the sur-
face/interface energy at κ0 and ∂γ /∂J2 is the change rate of the surface/interface
energy due to the change of the surface/interface area, and the negative µS has been
confirmed by Shenoy (2005) in his atomistic calculations.

The change of the interface energy-induced residual elastic field due to the
change of configuration can be solved from the governing equations in the bulk ma-
terial as well as the following equations at the interface:

A3 · [�σ ] · A3 = −�SS : b0

P0 · [�σ ] · A3 = −�SS · ∇0S where

�SS = (γ ∗
0 + γ ∗

1 )(tr ES)10 − γ ∗
0 ∇0S ⊗ u + γ1ES. (12)

The above theoretical framework can be used to calculate the effective moduli of
composites with the interface energy effect. For example, for a composite containing
spherical particles, we can calculate the displacement and stress at the interface on
the matrix side, so that a single particle together with the interface can be “mapped”
onto a “homogeneous equivalent” particle. Then the effective moduli can be calcu-
lated using conventional micromechanical approaches, e.g. the Mori–Tanaka method
and the generalized self-consistent method. Detailed discussion is given in Huang
and Sun (2006), and will not be reproduced here. In particular, if the interface stress
only weakly depends upon the interface strain such that it has a liquid-like proper-
ties and can be regarded as a constant, namely, γ = γ0, the effective bulk and shear
moduli of a heterogeneous material containing spherical voids of radius a can be
expressed as

K̄ = 1

3

[
12K0µ0(1 − f ) + 2(3K0 + 4µ0f )n

3K0f + 4µ0 + 2(1 − f )n

]
, (13)

µ̄ = µ0

2

[
4(1 − f )m1µ

2
0 + 4(2m2 − fm1)µ0n − 42m4µ0n − (m1f + 2m3)n

2

2(2fm3 + m1)µ
2
0 + 4(fm3 + m2)µ0n − 21m4µ0n − (1 − f )m3n2

]
,

(14)
where

m1 = 7 − 5ν0,m2 = 5 − 4ν0,m3 = 4 − 5ν0,m1 = 1 − ν0

and n = γ0/a. K0, µ0 and ν0 are the bulk modulus, shear modulus and Poisson
ratio of the matrix, and f is the volume fraction of the voids. It is seen that even
for a constant surface tension, the change of the curvature of the surface will affect
the effective moduli of a porous material. This is different from the results in the
literature.
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5 Concluding Remarks

The effect of surface/interface becomes very important in nanostructures and nano-
composites due to their large ratio of interface to volume. Taking into account this
effect renders the mechanical behavior of a composite size-dependent. In this pa-
per, some basic concepts related to the description of the effect of surface/interface
energy on the mechanical behavior of heterogeneous materials are discussed. Then
the interface constitutive relations are given in terms of the interface energy in both
Lagrangian and Eulerian descriptions within the framework of finite deformation.
The generalized Young–Laplace equations taking into account the change of con-
figuration are presented. Finally, following the proposed theoretical framework, the
effective properties of a heterogeneous material with the interface energy effect can
be obtained. It is shown that the liquid-like constant surface/interface tension can
also affect the effective moduli of the nanocomposite.
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Abstract. Peeling experiments for aluminum thin film along the Al2O3 substrate are car-
ried out, and the variations of external driving force (energy release rate) at the steady-state
delamination of the thin film in the metal film/ceramic substrate system are measured. Ad-
ditionally, theoretical modeling for the thin film delamination is also performed. Based on
the bending model, three double-parameter criteria are used. Three double-parameter criteria
include: (1) the interfacial fracture toughness and the separation strength, (2) the interfacial
fracture toughness and the interfacial crack tip slope angle of thin film, and (3) the interfacial
fracture toughness and the critical von Mises effective strain of thin film at crack tip. Based
on the three double-parameter criteria, the thin film nonlinear peeling problems are solved
analytically for each case. The results show that the solutions of thin film nonlinear peeling
based on the bending model are very sensitive to the model parameter selections. Through
analyses and comparisons to different solutions, a connection between solutions based on the
bending models and based on the two-dimensional elastic-plastic finite element analysis is
obtained. The effective regions of each model can be specified through comparing the present
experimental result with model solutions.

Key words: metal thin film, delamination, interfacial toughness, peel test, double-parameter
criterion.

1 Introduction

Most advanced materials are inseparable with thin films which with its particular
characteristic, has been widely applying to the surface and interfacial engineering
areas. The material behaviors of the thin film/substrate systems are mainly domin-
ated by the interfacial adhesion property (strength). In order to evaluate the adhesion
behaviors, a simple test method, peel test, was designed fifty years ago [1]. Due
to the good advantages of the test method, such as simply operating, the test has
been widely applying to many research regions [2–4]. Specifically, when both the
thin film and substrate are elastic materials, the interfacial adhesion toughness can
be obtained directly through measuring peeling force in peel experiment. However,
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when thin film or substrate is a ductile material, the measured peeling force is often
much larger than the interfacial adhesion toughness. The phenomenon is come from
the plastic dissipation due to material plastic loading and unloading deformation. In
order to model the peeling force (or energy release rate) increase due to plastic dis-
sipation, Kim and his collaborators [5, 6] presented a bending model to predict the
plastic dissipation. Within the following decade after bending model was presented,
most analyses related to the ductile thin film peeling adopted the bending model of
Kim et al., e.g., [7, 8]. However, Wei and Hutchinson [9] adopted a different method
from that of Kim et al. in analyzing the elastic-plastic thin film peeling problems.
In Wei and Hutchinson’s analysis, the thin film delamination process was simulated
by using the two-dimensional elastic-plastic finite element method (FEM), except
the detached part of thin film, which was described still by bending model in or-
der to avoid the difficulty in the two-dimensional large deformation analysis. They
obtained a kind of different results from that of bending model, qualitatively and
quantitatively. Recently, Wei [10] adopted three different double-parameter criteria
based on the bending model to obtain the different relationships between the peel
force and the thin film thickness. In the present research, in order to further explore
the connection of bending model solution with elastic-plastic FEM solution, and in
order to assess the effectiveness for every models, a series of the peel experiments
for Al thin film delaminated along the ceramic (Al2O3) substrate are carried out. The
relationship between the peel force and the thin film thickness at the steady-state
delamination is measured. By comparing the experimental curves with the modeling
solutions, a primary connection of both the bending model and the two-dimensional
FEM model is presented.

2 Model Descriptions

Peeling experiments for Al thin film along the ceramic (Al2O3) substrate are car-
ried out for a series of thin film thickness, t = 20, 50, 80, 100, 200, and 225 mi-
crons. There exists an adhesion layer between film and substrate with a thickness
of 20 microns. The interface layer material is Epoxy with two different percentages
of curing agent (Polyimide), respectively. A brittle adhesive layer is formed for a
compound of Epoxy with Polyimide, 1:1, and a ductile adhesive layer is for the pro-
portion 1:1.5. The adhesive layer thickness is 20 micron in the present experiment.
Figures 1a and 1b show the peel force varying with the peeling displacements for
thin film thicknesses t = 20 and 50 microns, respectively. Three curves in Fig-
ure 1a or in Figure 1b correspond to three samples. The adhesive layer corresponds
to ductile one. From Figures 1a and 1b, the feature of the peel force variations can
be described as follows: firstly, peel force varies linearly with peeling displacement,
secondly a steady-state peeling process is quickly arrived when peel force attains a
critical value. Figure 1c shows the experimental result of the steady-state peel force
(or called energy release rate) varying with several thin film thickness. Two curves
correspond to ductile and brittle interface adhesives, respectively.
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Fig. 1. Peeling experimental results.

3 Bending Models and Delamination Criteria in Peel Test

Delamination process of elastic-plastic thin film in peel test can be described by
Figure 2a. The thin film undergoes the delamination and plastically loading and un-
loading process under the act of the peel force P . The cross-section of the thin film
is from a free-stressing state to the loading and unloading processes, as described by
OABCDEF, in Figure 2a.

The process of the ductile thin film peeled and delaminated along substrate inter-
face can be characterized by the double-parameter criterion (for elastic delamination
case, single-parameter criterion is valid). Two independent parameters are needed
to characterize the main characters here, the interfacial adhesion property and the
plastic dissipation of the system. In the present research, three double-parameter cri-
teria [10] will be used respectively for describing the elastic-plastic peeling process,
which are given in Figures 2b, 2c and 2d, respectively.
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Fig. 2. Peel test sketch (a) and three simplified double-parameter models (b)–(d) [10].

For the thin film peeling process, the relation among the peeling force P per
unit width of thin film (or energy release rate of system), the interfacial adhesion
toughness �0, as well as the geometrical and physical parameters of thin film and
substrate is usually concerned. Under steady-state delamination, the relation can be
written as:

P(1 − cos�) = �0 (elastic peeling);
P(1 − cos�) = �0 + �p (elastic-plastic peeling),

(1)

where �p is the plastic dissipation. Based on the stress-strain analysis for thin film,
one can obtain the fundamental relations of the thin film undergoing the nonlinear
bending, furthermore, one can also obtain the plastic dissipation relation for �p , as
given in next section.
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4 Fundamental Relations

Kim and Aravas [5] derived out the fundamental relations based on the bend-
ing model for elastic-plastic thin film bending under the incompressible conditions
(ν = 1/2). The rigorous derivation based on the general case of the compressible
elastic-plastic conditions is given by [10, 11]. The relations of moment and curvature
respectively for elastic, plastic and unloading cases can be dictated as follows:

M

M0
= 2κ

3κe
; M

M0
=
{

2

3
− 2

N + 2
γ

}
1

(κ/κe)2
+ 2

N + 2
γ

(
κ

κe

)N

;

M

M0
= 2

3

κ − κ0

κe
, (2)

and curvature relation:

κ =
√

[1 − cos(φ − θ)]2P

B
+ (1 − w0)κ

2
0 , θB ≈ θtip ≤ θ ≤ θC. (3)

where M0 = 3/2Me is the limit bending moment for elastic-perfectly plastic mater-
ial; Me and κe are the elastic limit moment and elastic limit curvature, respectively,

Me = 2

3
M0 = σY t

2

6
√

1 − ν + ν2
, κe = 2(1 − ν2)σγ

Et
√

1 − ν + ν2

γ = 2

√
1

3
(1 − ν + ν2)

1−N

(1 − ν)N . (4)

B = Et3/12(1 − ν2) is the bending modulus; w0(0 ≤ w0 ≤ 1) is defined in Fig-
ure 1a which characterizes the inversely plastic behavior (or Bauschinger effect); θtip
is the crack tip slope angle at thin film delamination; N is material strain hardening
exponent. For incompressible material ν = 0.5 and γ = 1 expression (2) comes to
the result of Kim and Aravas [5].

Suppose that substrate is rigid or Young’s modulus of substrate is much larger
than that of thin film, by means of formulae (2) (M-κ relations in sketch of Fig-
ure 2a), one can obtain the plastic dissipation relation through calculating the area
within the circuit OABCDEO under M-κ curve,

�P = 1

2
Meκe − 1

2
MB(κB − κ0) +

(
2

3
− 2

N + 2
γ

)
M0

(
κe − κ2

e

κB

)

+ 2γ

(N + 1)(N + 2)
M0

(
κN+1
B

κN
e

− κe

)
+ 1

2
Bκ2

0w0 (5)

5 Bending Model Solutions of Thin Film Nonlinear Peeling

Based on three double-parameter criteria, the peel force can be solved for peeling
process. The solving procedures can be dictated as follows. Firstly, from (3) a relation
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Fig. 3. Results based on three double-parameter criteria (a)–(c) and two-dimensional finite
element method (d).

among the parameters (κB, P, θtip = θB, κ0) can be obtained to each criterion. Then
the parameters (MB, κB, κ0) can be solved simultaneously with Equations (2) for
M = MB and κ = κB . Finally, the peel force variations with related parameters can
be attained from (1) and (5).

The solution forms by adopting three double-parameter criteria can be given
through independent parameters by dimensional analysis. They are dictated as⎧⎨
⎩

P(1 − cos �)

�0
= f1(E/σY , σ̂ /σY ,N, ν, t/R0, w0,�)

θtip = r1(E/σY , σ̂ /σY ,N, ν, t/R0, w0, �)

(for (�0, σ̂ ) criterion); (6)

P(1 − cos�)

�0
= f2(N, ν, t/R0, w0,�, θc

tip) (for (�0, θ
c
tip) criterion); (7)
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Fig. 4. Variations of the thin film inclined angle at tip and the residual curvature with thin film
thickness based on the criterion (�0, ε̄c).

⎧⎨
⎩

P(1 − cos�)

�0
= f3(N, ν, t/R0, w0,�, ε̄c/εY )

θtip = r3(N, ν, t/R0, w0,�, ε̄c/εY )

(for (�0, ε̄c) criterion), (8)

where a length parameter R0 is introduced and is defined as R0 = ET0/3π(1 −
ν2)σ 2

Y , which characterizes the plastic zone size at crack tip under the small scale
yielding case. θtip is crack tip slope angle. εY = σY /E is yielding strain.

The solutions based on three double-parameter criteria (�0, σ̂ ), (�0, θ
c
tip) and

(�0, ε̄c) are given in Figures 3a–3c, respectively. Results in Figure 3 show the curves
of the normalized energy release rate (or peeling force) versus normalized thin film
thickness under elastic-plastic steady-state delamination. If thin film deformation is
elastic, P(1 − cos�)/�0 = 1, see first relation of formula (1). Clearly, the energy
release rate is remarkably enlarged by the plastic dissipation. From Figure 3a, the
variation of the normalized peeling force (energy release rate) P(1 − cos�)/�0
with thin film thickness can be described as follows. Its value tends to 1 when thin
film thickness is very small, i.e., the effect of plastic dissipation can be neglected.
As thin film thickness increases, energy release rate increases sharply and obtains a
maximum value at about t/R0 = 2. The plastic dissipation decreases gradually as
thin film thickness increases further. The results shown in Figure 3b are based on the
(�0, θ

c
tip) criterion. From the results, the variation of P(1 − cos�)/�0 versis t/R0 is

much different from that based on the double-parameter criterion (�0, σ̂ ). Here, the
value of P(1 − cos�)/�0 increases always as thin film thickness decreases. This
trend is consistent with that given by Kim and his collaborators for incompressible
material [5, 6]. The results based on the (�0, ε̄c) criterion are given in Figure 3c. Ob-
viously, the variation of P(1 − cos�)/�0 versus t/R0 is different from those shown
above based on the other double-parameter criteria. In Figure 3c, P(1 − cos�)/�0
increases linearly with increasing t/R0. The inclined angles of the straight line in-
crease with increasing the critical von Mises effective strain at tip. In order to invest-
igate the third criterion, Figures 4a and 4b show the variations of the crack tip slope
angle and the residual curvature. When thin film thickness is small, the slope angle

67



www.manaraa.com

Y. Wei et al.

is large. With increasing thin film thickness, the slope angle decreases sharply and
transits to negative value from positive value. Obviously, the negative slope angle
of thin film at tip violates the physical requirement. It implies that the criterion is
failure and the predicted results, top part of the dashed line in Figure 3c, should be
cut off. The reason can be interpreted in referring to Figure 4b that when thin film
thickness is small, the large critical Mises effective strain at crack tip is realized by
large bending deformation (curvature) in thin film, however when thin film thickness
is large, it is difficult or even impossible to realize the large bending curvature of thin
film to meet with the high critical Mises effective strain, and in this case the criterion
(�0, ε̄c) is failure.

In order to assess the bending model solutions based on the above three two-
parameter critera, the two-dimensional elastic-plastic finite element results [9] are
also shown here, see Figure 3d. From Figure 3d, the bending model results based
on the third double-parameter criterion have the similar variation trends and quantity
with those of the elastic-plastic finite element calculation within the region of about
t/R0 < 5 (in Figure 3d, Es is Young’s modulus of elastic substrate). However, as
thin film thickness increases continuously, the finite element solution tends to the
small scale yielding solution (insensitive to thin film thickness), while the bending
model solution based on the double-parameter criterion is failure. Therefore, when
thin film thickness is large, i.e., t/R0 > 5, how to set up a governing parameter
criterion based on the bending model will be a tough task to need to be explored in
the future.

6 Comparison of Experiment Results with Modeling Results

Peeling experimental results of the relationship between the energy release rate and
the film thickness at the steady-state delamination are shown in Figure 1c. Modeling
results based on the bend model three criteria and the two-dimensional finite element
method are shown in Figure 3. Through comparing the experimental results with the
modeling results, the following key points can be read:

1. Both parameter criteria, (�0, σ̂ ) and (�0, θ
c
tip), are suitable for a weaker-adhesion

interface case, while two-dimensional elastic-plastic analysis (finite element
simulation) is suitable for a stronger-adhesion interface case.

2. When film thickness is very thin, such as for t/R0 < 5, the criterion (�0, θ
c
tip) is

failure, while the other criteria mentioned above are valid.

7 Discussions to Bending Model Solutions

In the present research, the peel experiments for Al thin film delaminated along the
ceramic (Al2O3) substrate have been carried out. The relationship between the peel
force and the thin film thickness at the steady-state film delamination has been meas-
ured. By comparing the experimental curves with the modeling solutions, the effect-
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ive regions for each analysis models has been assessed, and a primary connection of
both the bending model and the two-dimensional FEM model has been developed.

The bending model solutions of thin film nonlinear peeling based on the three
double-parameter criteria have been obtained in last section. Obviously, the bending
model solutions are very sensitive to the selection of the governing parameters. This
leads to a question: what is a reasonable selection of the governing parameter group
for predicting the thin film nonlinear peeling by using the bending model? From the
solutions based on the first and second double-parameter criteria, when normalized
thin film thickness is smaller than about 5, t/R0 < 5, the contribution of bending
plastic dissipation to energy release rate is very large. This can be confirmed from
variation of the residual curvature in [11]. However, from the solutions based on the
criterion of the interfacial fracture toughness and the critical Mises effective strain,
when thin film thickness is smaller than about 5, t/R0 < 5, the contribution of the
bending plastic dissipation to energy release rate is obviously smaller than that based
on the first or second criterion.

Through comparing the experimental results with the modeling results, one
can conclude that both parameter criteria, (�0, σ̂ ) and (�0, θ

c
tip), are suitable for a

weaker-adhesion interface case, while two-dimensional elastic-plastic analysis (fi-
nite element simulation) is suitable for a stronger-adhesion interface case, however
when film thickness is very thin, such as for t/R0 < 5, the criterion (�0, θ

c
tip) is

failure, while the other criteria mentioned above are valid.
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Abstract. A simple and effective characterisation technique based on micro-cantilever beams
for thin film materials using commonly available equipment – scanning surface profiler – is
described. The advantages of this class of techniques are simplicity, speed, cost and a wide
applicability. A technique for extracting the Young’s modulus from static deflection data is
developed and validated in experiments on thin film specimens of silicon nitride deposited
on a silicon substrate under different conditions. Finite element analysis is used to assess the
influence of factors affecting the bending of thin films, and thus guide the analysis of micro-
cantilever deflection data for reliable characterisation of the material.

Key words: MEMS materials, thin films, cantilevers, scanning surface profiler, finite element
methods, elastic modulus.

1 Introduction

A large number of applications in the field of micro-electro-mechanical systems
(MEMS) rely on the mechanical properties of thin film materials, whereas a wide
range of sensors and actuators rely on the properties of elastic flexures for targeted
performance specifications. The use of thin film materials in packaging applica-
tions, for example passive micro-clips, active bi-morph actuators or bi-stable devices,
places a considerable demand on reliable material properties data [1]. Accurate char-
acterisation of these mechanical properties is important for the reliable and optimal
design of MEMS devices. Wafer to wafer variations in deposition processes, or alter-
ations to deposition conditions, often require checking the properties of a particular
film. A straightforward and reliable technique for extracting materials properties with
the least disruption would be extremely valuable.

Osterburg and Senturia [2] suggested to use the electrostatic pull-in phenomenon
to measure the Young’s modulus, Poisson’s ratio and the residual stress in thin
films (the M-TEST). The test procedure therefore requires conducting test structures
(beams and diaphragms), separated from a conducting substrate by an insulating
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layer. This places a degree of restriction on the types of wafer and thin-film material
that can be tested.

Noticing the deficiencies of the M-Test, Hopcroft [3] discussed a new test (the
MAT-TEST) based on the deflection of micro-cantilevers using scanning profilo-
metry. Cantilever beams can be created using a range of common surface- and bulk-
micromachining techniques. They can be fabricated from any material (insulating or
conducting) with sufficient stiffness to permit a free-standing structure. The use of
statically determinate structures removes the effect of in-plane residual stresses (al-
though through-thickness variations may lead to beam curvature). A technique for
extracting the Young’s modulus by using a polynomial curve fit to beam deflection
data was suggested [3].

Techniques exist for the tensile testing of thin film specimens [4–6]. This al-
lows for the more conventional stress-strain curve analysis of the specimens, and
can provide information on both the elastic modulus and the failure stress. These
techniques are, however, complex in terms of sample preparation and load applica-
tion methods. The application of macroscopic testing techniques on the microscopic
scale is extremely difficult, especially the accurate measurement of force and dis-
placement with MEMS actuators and sensors [7].

The work presented here aims to develop measurement and analysis techniques
applicable to cantilever beam based Young’s modulus measurement. The benefits of
cantilever beams as test structures in terms of simplicity, reproducibility, reliability
of fabrication, time and cost are significant. Beams are tested by scanning from root
to tip with a surface profiler, measuring deflection against horizontal position for a
prescribed force. The principal material to be investigated is silicon nitride. This is
a valuable structural material in MEMS, as it has a high modulus, can endure large
strains without permanent deformation, and its resistance to common anisotropic wet
etching processes makes it ideal for creating suspended structures without the need
for a sacrificial layer.

This paper is organized as follows. The fabrication and testing procedure for
thin-film cantilever beams are described in Section 2. Section 3 outlines the method
adopted for the extraction of Young’s modulus from measurements of force and
deflection, subject to the specific constraints of scanning profiler testing of micro-
cantilevers. Section 4 uses finite element analysis to quantify beam bending phe-
nomenon which will affect the measured Young’s modulus, in particular the effects
of large deflections, beam stiffening, loading with a point force and the existence of
compliant root conditions. Experimental results for the extraction of Young’s modu-
lus are presented and discussed in Section 5.

2 Fabrication and Testing

Cantilever beams are used as the test structures for measuring Young’s modulus with
scanning profilometry. A cantilever beam can be produced using a range of stand-
ard micro-machining techniques. For the test structures described here, the beam
outline is cut into the surface film (silicon nitride deposited on a silicon substrate)
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Fig. 1. Fabrication process of a typical cantilever test beam: (a) after laser ablation of beam
outline; (b) after one hour of anisotropic wet etching in potassium hydroxide solution; (c) after
four hours wet etching; (d) enlarged view showing root undercut.

using focussed laser ablation (Figure 1). The beam structures are released by bulk
micromachining of the silicon substrate, exposed by the pattern cut. An anisotropic
potassium hydroxide (KOH) wet etch is used (20% solution of KOH and deionised
water at 80◦C). The silicon nitride structure forms an ideal mask material, as its etch
rate is considerably lower than that of the silicon. Upon etching, the beams are put
into ethanol before drying, to minimise the possibility of stiction or breaking due to
surface tension of the solution.

As the silicon (111) planes provide a natural etch stop, the substrate will etch
into a pit bounded by these planes and extremities of the pattern cut into the nitride.
Provided the beam pattern is accurately aligned to the (110) planes, the beam will be
released with minimum undercut of the cantilever root. Undercut to some extent is
unavoidable in practise. If the cantilever root lay in a [110] direction exactly, the etch
rate of (111) planes is not zero and hence a small undercut would be experienced.
Larger structures require a longer etch time, increasing this effect. More significant is
the effect of misalignment with the (110) planes due to imperfect pattern alignment
or the tolerance expected in the crystal orientation of the wafer.

When the beam is fully undercut, residual stresses in the film will become appar-
ent. In-plane compressive/tensile residual stresses result in a lengthening/shortening
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Fig. 2. Notation used to represent beam bending.

of the beam, whereas a through-thickness residual stress gradient leads to beam bend-
ing. Any initial curvature of the cantilever needs to be taken into account when look-
ing at subsequent force-deflection data.

Three different specimens of silicon nitride are used for the extraction of Young’s
modulus, referred to here as TM, STS and TM/O. The silicon nitride TM is sil-
icon rich and deposited at high temperature. It therefore has a low intrinsic stress,
but is unsuitable for temperature limited processes. Silicon nitride STS is depos-
ited at lower temperature, increasing its range of applications, but with higher in-
trinsic stress and reduced mechanical properties. The specimen TM/O is silicon ni-
tride TM deposited on a thermally grown oxide layer. This tests the applicability of
the Young’s modulus measurement technique to bi-layer materials, which are com-
monly used in MEMS, for example, thermal actuators.

The film thickness is measured using scanning profilometry. Pieces of silicon ni-
tride released by the etching process (either the redundant boundaries to patterns or
squares specifically laser cut into the film for this purpose) can be collected and
scanned with a surface profiler to give a thickness measurement. Silicon nitride
pieces can be extracted from the etch solution using a pipette and dropped onto a
glass slide, or simply caught on the wafer surface if the specimen is dried carefully.

3 Young’s Modulus Extraction Method

Scanning a cantilever from a location on the bank across the root to the tip will
produce a set of deflection readings for a given stylus force. The conventions used
here are to denote horizontal distances measured relative to the start of scan with X

and distances measured relative to the beam root with x, as shown in Figure 2. The
distance measured along the beam length is given by s. Displacements relative to the
horizontal (the bank) are denoted y.

With reference to Figure 2, the curvature of an initially straight cantilever beam
with ideal root conditions subjected to a force some distance from the root is given
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by:

κ =
d2y

ds2√
1 −

(
dy
ds

)2
=

d2y

dx2[
1 +

(
dy
dx

)2
]3/2 = F(xF − x)

EI
, (1)

where E is the Young’s modulus and I the second moment of area of the cantilever.
This can be solved iteratively by assuming a form of y(x) and integrating d2y/dx2

twice (taking ideal boundary conditions of zero displacement and rotation at the
root) to give a new estimate. A polynomial expression for the deflection at the point
of application of the load can be found to the required number of terms:

yF =
(

F

EI

)
x3
F

3
+
(

F

EI

)3 x7
F

35
+
(

F

EI

)5 x11
F

231
+
(

F

EI

)7 x15
F

1287
+ · · · . (2)

For the case where deflections are small, such that higher order terms can be neg-
lected, this expression reduces to the Euler expression (where the horizontal coordin-
ate xF and the beam length sF are interchangeable):

ySD =
(

F

EI

)
x3
F

3
. (3)

Plotting the deflection resulting from a range of applied forces at a given ho-
rizontal position results in a straight line with gradient γ = 3EI/x3

F , so long as
Equation (3) is applicable. However, the horizontal distance to the beam root (xF )

remains an unknown in a practical scanning profiler test, due to the difficulty in loc-
ating the start of scan relative to the beam root. This can be solved by considering the
gradients (γ1 and γ2) of the curves produced at two positions along the beam whose
separation is known (xF1 and xF2 = xF1 +�x). The required distance can be found
by taking the following ratio:

1 = γ1x
3
F1

γ2x
3
F2

= γ1

γ2

(
1 + �x

xF1

)−3

. (4)

This can be repeated for any number of horizontal positions to produce a set of
measurements of Young’s modulus.

4 Finite Element Analysis

The analysis described in Section 2 depends on a number of key assumptions:
(a) beam bending is small and unaffected by higher order deflection terms; (b) bend-
ing is entirely two dimensional; (c) root conditions are ideal (i.e., no deflection or ro-
tation permitted at the root). For a given practical beam deflection experiment these
need not be the case. Large, non-linear deflections are achievable, depending on the
cantilever geometry and the load provided by the surface profiler. Ashwell [8] has
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shown that anticlastic curvature, a curvature about an axis perpendicular to the main
curvature, can cause stiffening in beams and plates (note that when the stylus is ap-
plying a load near the root, it is in effect bending a plate). A profiler stylus also has
a tip which applies a point load for a practical beam width, which may induce three-
dimensional effects. Imperfect root conditions are also a likely consequence of the
fabrication issues as discussed in Section 1.

Finite element (FE) analysis, using the commercially available finite element
package ABAQUS, is employed to investigate these effects under controllable condi-
tions. Eight-node quadratic shell elements are used in a non-linear analysis to model
rectangular cantilever beams. A mesh sensitivity investigation has been carried out
to determine the adequate element size to capture the beam bending under the range
of loads considered. Beam thickness of 2 µm and widths of 10 µm, 50 µm and
100 µm are used, as realistic values for scanning profiler test specimens. Elastic ma-
terials properties are used, with Young’s modulus E = 250 GPa and Poisson’s ratio
ν = 0.3, reasonable for a material such as silicon nitride. Loads between 4.91 µN
and 147 µN (typical range for a scanning profiler) are applied at 50 µm intervals
along the 500 µm beam length. Where required, the horizontal position of the load
(xF ) in the deformed configuration is calculated from the known beam length using
the reasonable approximation:

xF ≈
√
s2
F − y2

F . (5)

4.1 The Effect of Point Loading

To investigate any three-dimensional effects induced by stylus loading, which is not
captured in the previous bending model, the force is applied in the FE model at both
a point and a line across the cantilever width. The results, given in Figure 3, show
that for small values of sF /w (ratio of beam length to its width) concentrating the
load at a point results in a larger deflection. This is consistent with local ‘indentation’
occurring when the beam has a high stiffness (due to plate bending). This effect is

minimal as long as sF /w ≈
√
x2
F + y2

F /w > 1.

4.2 Large Deflection and Stiffening Effects

Examination of the ratio of the deflection expression valid for large deflections,
Equation (2), and the small deflection approximation, Equation (3), shows that for
this approximation to be valid it is important to keep the parameter Fx2

F /EI small:

yF

ySD
= 1 + 3

35

(
Fx2

F

EI

)2

+ 3

231

(
Fx2

F

EI

)4

+ 3

1287

(
Fx2

F

EI

)6

+ · · · (6)

Counteracting the effect of large deflections is the stiffening effect introduced by true
three-dimensional plate bending. Aswell [8] found that the effective bending stiffness
of a beam, taking into account anticlastic effects, is dependent on a non-dimensional
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Fig. 3. Finite element calculations for beam deflection utilising a point load (yPL) and a line
load (yLL). A practical range of loads and beam widths are shown.

parameter, defined here as ψ , which includes the width (w), thickness (t) and main
curvature (κ):

ψ = w2κ

t
= 12wF(xF − x)

Et4 . (7)

For large values of ψ , the effective elastic modulus tends to the plate modulus Ep.
For ψ = 0, the elastic modulus is simply the Young’s modulus E. It should be noted
that the analysis carried out by Ashwell assumes that the anticlastic curvature is small
(effectively employing small deflection assumptions for the transverse curvature).
This assumption can be valid even when the main curvature is large, due to the rela-
tionship κ ′ = νκ , where κ ′ is the anticlastic curvature.

Replacing Young’s modulus E with the plate modulus E(1 − ν2) in (6) leads to:

yF

ySD
= (1 − ν2)

⎛
⎝1 + 3(1 − ν2)2

35

(
Fx2

F

EI

)2

+ 3(1 − ν2)4

231

(
Fx2

F

EI

)4

+ 3(1 − ν2)6

1287

(
Fx2

F

EI

)6

+ · · ·
⎞
⎠ . (8)

Finite element results along with Equations (6) and (8) are plotted in Figure 4. The
first point to note is the tendency toward ‘plate-like’ behaviour or ‘beam-like’ beha-
viour, i.e., whether the deflection is governed by the plate modulus or Young’s mod-
ulus. At all stylus forces, the results tend towards plate behaviour at lower values of
Fx2

F /EI , corresponding to loading the beam near the root. For higher stylus forces,
the higher curvatures induced increase the anticlastic stiffening effect, so the plate-
like behaviour extends to higher values of Fx2

F /EI . The second point to note is the
feasibility of the small deflection approximation (3). Given a choice of load such that
‘beam-like’ behaviour dominates, the selection of Fx2

F /EI values less than around
0.6 should ensure agreement with small deflection theory to within 5%.
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Fig. 4. Finite element calculations for beam deflection (yLL, line load used) normalised with
small deflection approximation (ySD). Shown are results for the maximum and minimum typ-
ical stylus forces for two beam widths. The analytical curves represent four term expressions
using Young’s modulus, Equation (6), and plate modulus, Equation (8).

4.3 The Effect of Root Compliance

When deflections are small, the effect of a compliant root can be modelled by as-
suming the root of the cantilever beam is attached not to a rigid bank but to a second
cantilever beam of stiffness ERIR and length LR . This permits the root of the main
cantilever to have a finite deflection and rotation. By considering continuity of shear
forces and bending moments where the beams join and the principal of superposition,
the tip deflection of the main cantilever beam becomes:

yCR = Fx3
F

3EI
+ F

ERIR

(
x2
FLR + xFL2

R + 1

3
L3

R

)
. (9)

For a real compliant region, i.e., the undercut at the cantilever root, the material
and thickness are the same but the region has a greater width than the main cantilever.
If this is modelled by assuming ERIR = EwRt3/12 (where E and t are separately
the Young’s modulus and thickness of the main beam), the ratio of the deflections for
perfect and compliant root conditions is given by:

yCR

yF
= 1 + w

wR

(
3 + LR

xF
+ 3

(
LR

xF

)2

+
(
LR

xF

)3
)

. (10)

This indicates that a compliant root should provide an increase in displacement at a
given xF that is not dependent on the force. Therefore the gradient of a plot of force
against deflection for a given horizontal position should be unaffected, the curve
being translated parallel by an offset given by (10).

A practical compliant root, caused by the undercut resulting from the wet etch
process (Figure 1) will deflect in a more complicated way than a two stage cantilever
beam, making it more difficult to isolate the parameters wR and LR . One approach
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Fig. 5. Finite element calculations for beam deflection for a compliant root model (yCR) and
an ideal root model (yF ). The best fit curve for Equation (10) is displayed.

is to take LR as the undercut distance and wR as some effective width representative
of the undercut bank suffering from bending.

A finite element model of a compliant root has been created using a short (20 µm)
wide (500 µm) rectangular plate, clamped on three sides with the cantilever root
at the centre of the free edge. The results demonstrate that the model described in
(10) proves a good fit to the finite element results when an effective width for the
compliant region wR = w + 0.85LR is used (Figure 5).

5 Experimental Measurement

5.1 Additional Experimental Considerations

An additional assumption which has not been addressed in Section 3 is that the canti-
lever beams are initially straight. For real cantilevers formed by thin-film deposition
techniques, the resultant bending moment due to any gradient in through-thickness
residual stress will cause the cantilever to have an initial curvature once released
from the substrate.

5.2 Experimental Procedures

Step 1 – Constant force deflection curves
Each specimen beam is scanned from root to tip centrally along the cantilever beam
at constant profilometer stylus force, producing a set of values of xF and yF . The
stylus is raised before the beam tip is reached to minimise movement of specimen.
Repeated scans at different stylus forces are made, using the same data sampling rate.

Step 2 – Force-deflection plots
Fixing the sampling rate permits a value for yF to be found for a range of forces at
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Table 1. Average experimentally measured Young’s modulus. The average is taken for each
specimen over the range 200 µm ≥ xF ≥ 300 µm. Where superposition is applied, the smal-
lest force deflection plot is subtracted from subsequent plots.

No Superposition Superposition
Silicon Nitride Mean Standard Dev. Mean Standard Dev.
Specimen (GPa) (GPa) (GPa) (GPa)
TM 155.6 0.6 154.9 0.8
TM/O 140.4 1.0 133.0 1.0
STS 66.5 0.4 62.3 0.4

each value for xF . This allows a force-deflection plot to be produced for a constant
value of xF , with the gradient providing the Young’s modulus [Equation (3)].

Step 3 – Locating beam root
Eight values for the gradient, approximately evenly spaced, are selected. Equation
(4) is applied between every pair of the eight data points, giving 28 estimates of the
beam root position. An average is then taken, and used as the root position value
in subsequent calculations. The standard deviations in the experimentally obtained
values of root position calculated by this method are in most cases less than 5% of
the average value.

Step 4 – Calculation of Young’s modulus
The previous step allows E to be plotted against the horizontal scan position xF .
Results from the finite element analyses can be used to locate a suitable range of
xF over which a representative value for Young’s modulus can be expected. The
extracted values can be averaged over this range.

5.3 Experimental Results

The approach outlined in the preceding section is now applied to the three specimens
of silicon nitride discussed in Section 3. Test cantilevers of width measured at 75 µm
for the silicon nitride TM and TM/O and 80 µm for the STS are used. The material
thickness is measured as 3.40 µm for the silicon nitride TM, 2.25 µm for the TM/O
and 2.42 µm for the STS. In each case, the Young’s modulus is calculated with
and without the use of superposition to correct for initial curvature. Superposition is
applied by subtracting the deflection measured from the lowest force scan.

Figure 6 presents the deflection curves obtained from the scans at different forces
on each beam. Five loads are used for each beam, with the magnitude of the force at-
tainable dependent on the bending stiffness of each beam. Figure 7 shows the extrac-
ted plots of Young’s modulus against horizontal stylus position for the cases where
superposition is not applied. Table 1 summarises the averaged values of Young’s
modulus for each case.
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Fig. 6. Experimental deflection curves: (a) SiN TM; (b) SiN TM/Ox; (c) SiN STSMF.
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Fig. 7. Calculated Young’s modulus (no superposition): (a) SiN TM; (b) SiN TM/Ox; (c) SiN
STSMF.
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6 Conclusions

The need for a simple and effective technique that can be applied to a wide range
of materials using commonly available equipment has prompted the consideration of
cantilever beam based materials characterisation. A combined analytical and experi-
mental study has been carried out to demonstrate the applicability of this technique
in selected thin film materials. The basis of this approach is the deflection of micro-
cantilevers using a scanning surface profiler to extract mechanical properties. The
advantages are simplicity, speed, cost and wide applicability.

Acknowledgements

We would like to thank EPSRC for supporting this work through grant ‘Active Pack-
aging for Optical and Electronic Microsystems (APOEM)’. TJL wishes to thank
the National Basic Research Program (No. 2006CB601202), National 111 Pro-
ject (No. B06024), and National Natural Science Foundation (Nos. 10328203 and
10572111) of China for partial financial support of this work.

References

1. D.F. Moore, Laser micromachining of thin films for optoelectronic devices and packages,
Proceedings of SPIE 4941, 2003.

2. P.M. Osterberg and S.D. Senturia, M-TEST: A test chip for MEMS material property meas-
urement using electrostatically actuated test structures, JMEMS 6, 1997, 107–118.

3. M. Hopcroft, MAT-Test: A new method for thin-film materials characterisation, MPhil
Thesis, Cambridge University, 2002.

4. W.N. Sharpe, J. Bagdahn, K. Jackson and G. Coles, Tensile testing of MEMS materials –
Recent progress, Journal of Materials Science 38, 2003, 4075–4079.

5. T.E. Buchheit, S.J. Glass, J.R. Sullivan, S.S. Mani, D.A. Lavan, T.A. Friedmann and R.
Janek, Micromechanical testing of MEMS materials, Journal of Materials Science 38,
2003, 4081–4086.

6. A. Corigliano, B. De Masi, A. Frangi, C. Comi, A. Villa and M. Marchi, Mechanical char-
acterisation of polysilicon through on-chip tensile tests, JMEMS 13, 2004, 200–219.

7. D.J. Bell, T.J. Lu, N.A. Fleck and S.M. Spearing, MEMS actuators and sensors: Observa-
tions on their performance and selection for purpose, J. Micromech. Microeng. 15, 2005,
153–164.

8. D.G. Ashwell, The pure bending of rectangular plates, Engineering, 51–52, 21 July 1950,
and 76–78, 28 July 1950.

83



www.manaraa.com

Part 3

Nanomechanics of Biomaterials



www.manaraa.com

Bio-Inspired Mechanics of Bone-Like
Hierarchical Materials

Huajian Gao∗

Max Planck Institute for Metals Research, Heisenberstrasse 3, 70569 Stuttgart, Germany;
E-mail: hjgao@mf.mpg.de

Abstract. Nanotechnology promises to enable mankind to design materials hierarchically via
a bottom-up approach, i.e. by tailor-designing materials from atomic scale and up. However,
currently we barely have any theoretical basis on how to design a hierarchical material to
achieve a particular set of macroscopic properties. To demonstrate the potential of bottom-
up design, we consider a model material with self-similar hierarchical structures mimicking
the elementary structure of bone. The resulting “fractal bone” exhibits a similar structure at
each hierarchical level consisting of staggered hard plates aligned in a soft matrix. Simple
analytical models are adopted to evaluate the stiffnesses, strengths and fracture energies of
all hierarchical levels. The hierarchical structural sizes are determined based on the principle
of flaw tolerance. It is shown that the bottom-up designed fractal bone can tolerate crack-like
flaws from nanoscale all the way to macroscopic scales without size limit.

Key words: fracture, flaw tolerance, biomechanics, bio-inspired mechanics, bone, hierarch-
ical materials.

1 Introduction

We have been studying mechanical properties of the elementary structures of hard
biological tissues such as bone, tooth, and shells [1, 2]. These materials exhibit hier-
archical structures over many length scales. While sea shells exhibit 2 to 3 levels of
lamellar structure [3–6], bone has 7 levels of hierarchy [7–10]. Although the higher
level structures of biological materials show significant complexity and variations,
nature exhibits a convergent evolution towards a generic nanostructure with slender
mineral crystals embedded in a soft protein matrix [1–11]. The nanostructure of tooth
enamel consists of needle-like (15–20 nm thick and 1000 nm long) crystals embed-
ded in a small volume fraction of protein [12, 13]. The nanostructure of dentin and
bone is made of plate-like (2–4 nm thick and up to 100 nm long) crystals embedded
∗ Present address: Division of Engineering, Brown University, Providence, RI 20912, U.S.A.;

E-mail: Huajian_Gao@brown.edu.
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Fig. 1. The elementary structures of nacre and bone. (a) Nacre consists of plate-like mineral
crystals 200–500 nm in thickness and a few micrometers in length with a small amount of soft
matrix in between. (b) The nanostructure of bone consists of plate-like mineral crystals 2–4 nm
in thickness and up to 100 nm in length embedded in a collagen- rich protein matrix. (c) The
generic biological nanostructure represents a convergent design of natural evolution. (d) The
primary load bearing zones of biological nanostructure show mineral crystals primarily in
tension and protein primarily in shear. At the nanostructure level, the load is mainly uniaxial
and is transferred via the route of a tension-shear chain as illustrated.

in a collagen-rich matrix [10, 14, 15]. Nacre consists of plate-like crystals (200–
500 nm thick and a few micrometers long) with a very small amount of soft matrix
[3, 4, 6, 17]. Figure 1 shows the common design of elementary structures of nacre
and bone. Similar structures can be found also in the cell walls of wood made of hard
cellulose fibrils in a soft hemicellulose-lignin matrix [18, 19]. The toughness of bio-
logical materials has been attributed to their multi-level structures [4, 5, 16, 20], the
energy dissipation properties of protein [21], the surface asperities of mineral plates
[17] and the reduction of stress concentration at a crack tip [22].

2 Flaw Tolerance Criterion

The self-sensing, self-adapting and self-repairing capabilities of bone require con-
stant removal and replacement of old and damaged materials with fresh and
healthy materials while an animal is conducting its normal activities, indicating
that bone must tolerate crack-like flaws of many size scales. The state of mater-
ial in which failure occurs not by propagation of pre-existing cracks but by uni-
form rupture at the limiting strength is referred to as flaw tolerance [1, 2, 23,
24], a concept which has been used to explain the nanostructure designs of bone

88



www.manaraa.com

Bio-Inspired Mechanics of Bone-Like Hierarchical Materials

[1, 2] and gecko [23, 24]. Flaw tolerance in biological materials can be related to
the well known phenomena and concepts of notch insensitivity, fracture size effects
and large scale yielding or bridging in fracture mechanics [25–27]. The condition to
achieve flaw tolerance can be expressed as [28]

�f t = �E/(S2h) = 1, (1)

where �f t is called the flaw tolerance number, � is the fracture energy, E is the
Young’s modulus, S is the limiting strength and h is the characteristic size of the
material.

3 The Fractal Bone Model

In order to demonstrate the potential of bottom-up design, we consider a hierarchical
material with self-similar structures mimicking the nanostructure of bone at all levels
of structural hierarchy (Figure 2). The resulting “fractal bone” will be designed to
achieve flaw tolerance at all hierarchical levels under uniaxial tension. The fractal
bone contains N levels of staggered hard plates in soft matrices that absorb and
dissipate fracture energies. The structure design starts at the lowest level. Properties
at the next level of hierarchy are determined from the current level, and the flaw
tolerance condition is used to determine structural sizes of all hierarchical levels.

At the n-th hierarchical level, the geometrical parameters are the thickness hn

and length �n of the hard plates with aspect ratio ρn = �n/hn � 1. The volume
fraction of the hard phase is denoted as ϕn. The overall volume fraction of mineral

� = ϕ1ϕ2 . . . ϕN =
N∏
1

ϕn (2)

is assumed to be a material parameter. The mechanical properties of level n are
Young’s modulus En, strength S and fracture energy �n. In the bottom-up approach,
the structures are designed in the following sequence (Figure 2)

h1 → h2 → · · · → hN = H (3)

by repetitive applications of the flaw tolerance condition in Equation (1).
For the fractal bone, we keep the aspect ratio and volume fraction of the hard

phase invariant over all hierarchical levels, ρn = ρ, ϕn = ϕ, so that

ϕn = ϕ = �1/N . (4)

In the following, the hierarchical properties of the fractal bone are determined iterat-
ively using a bottom-up approach. More details can be found in a forthcoming paper
[29].

The hierarchical stiffnesses of the fractal bone are determined iteratively using
the bottom-up equation
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Fig. 2. The N-level hierarchical structures of the fractal bone. Every level of structure is similar
to the elementary structure of bone and nacre, with staggered hard plates aligned in a soft
matrix. A hard plate of the (n + 1)-th level is made of staggered hard plates in a soft matrix
at the n-th level. The principle of flaw tolerance is used to determine the structural sizes of all
levels using a bottom up approach.

1

En+1
= 4(1 − �1/N)

Gp�2/Nρ2 + 1

�1/NEn

, E0 = Em, (5)

where Em is the Young’s modulus of mineral and Gp is the shear modulus of the
soft phase assumed to be constant over all structural levels n = 1, 2, . . . , N . For a
large number of hierarchical levels, Equation (5) approaches the Voigt upper bound
En+1 ≈ �1/NEn with solution En ≈ �n/NEm.

The hierarchical strengths are determined by the bottom-up equation

Sn+1 = �1/NSn/2, S0 = σth, (6)

with solution Sn = �n/Nσth/2n. The strength of the soft phase is chosen to be
S
p
n = Sn/ρ to ensure that both phases fail at about the same time.

The hierarchical fracture energies of the fractal bone are evaluated assuming that
the hard plates are pulled out of the soft phase during fracture (Figure 3),

�n+1 = (1 − �1/N)hnSn�p, �0 = 2γ, (7)

where �p denotes the failure strain of the soft phase and γ is the surface energy of
mineral.

The hierarchical structural sizes are determined bottom up according to the flaw
tolerance condition as

hn+1

hn

= 4(1 − �1/N)�pEn+1

Sn�2/N , h0 = 2γEm

σ 2
th

. (8)
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Fig. 3. Fracture at the (n + 1)-th level of structural hierarchy is assumed to occur by having
the hard plates pulled out of the soft matrix. The hard plates remain intact as the soft phase
undergoes large shear deformation until rupture. The width of the fracture process zone is
assumed to be on the order of the length of the hard plates.

If we approximate En+1 by the Voigt bound En+1 ≈ �1/NEn, Equation (8) can be
reduced to a simplified iterative equation

hn+1

hn

= 2n+2(1 − �1/N)�pEm

�1/Nσth

, h0 = 2γEm

σ 2
th

, (9)

with solution

hn =
[

2(n+3)/2(1 − �1/N)�pEm

σth�1/N

]n

h0. (10)

With N levels of structural hierarchy, the flaw tolerance size of the fractal bone will
reach the overall dimension

H = hn =
[

2(N+3)/2(1 − �1/N)�pEm

σth

]N
h0

�
. (11)

Note that H → ∞ as N → ∞ regardless of the values of the material properties
Em, �p, σth, �. Therefore, with increasing hierarchical levels, the fractal bone can
tolerate crack-like flaws without size limit.

4 Results and Discussions

Figure 4 shows the calculated properties of the fractal bone as a function of the
number of hierarchical levels. In the calculation, we assume typical materials prop-
erties of bone γ = 1 J/m2, � = 0.45, Em = 100 GPa, σth = Em/30 and

91



www.manaraa.com

H. Gao

Fig. 4. Variation of the overall properties of the fractal bone with the number of hierarch-
ical levels. (a) The overall stiffness normalized by the Voigt upper bound shows a moderate
increase with increasing hierarchical levels; (b) The overall strength normalized by the theor-
etical strength of mineral drops by roughly a factor of 2 with each added level of hierarchy.
(c) The flaw tolerance size of the fractal bone normalized by the thickness of mineral platelets
increases exponentially with structural hierarchy. The solid lines are calculated from Equa-
tion (8) and the dashed lines correspond to the simplified solution of Equation (11). (d) Tab-
ulated flaw tolerance sizes of the fractal bone approaching astronomical values as the number
of hierarchical levels increases.

Em = µpρ
2 = 1000µp. We consider two estimates �p = 25% and �p = 100%

for the failure strain of protein.
Figure 4a plots the overall stiffness of the fractal bone normalized by the Voigt

upper bound of the composite. The result indicates that hierarchical design only res-
ults in a moderate increase in stiffness. After a few levels of hierarchy, the stiffness
saturates at about 30% of the Voigt limit. Figure 4b shows that the strength of the
fractal bone drops by roughly a factor of 2 with each added level of hierarchy. As-
suming the theoretical strength of mineral crystals to be on the order of 3 GPa, the
result plotted in Figure 4b indicates a strength reduction by about two orders of mag-
nitude with 6 levels of hierarchy.

On the other hand, the hierarchical structures of the fractal bone exhibit an amaz-
ing effect on the toughness of the composite. Figures 4c and 4d plot and tabulate
the overall size of the material under flaw tolerance design. The solid lines are cal-
culated from Equation (8) while the dashed lines correspond to the simplified solu-
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tion in Equation (11). The results show that the flaw tolerance size of the material
increases exponentially with the number of hierarchical levels. Under the selected
material parameters, the flaw tolerance size of individual mineral platelets is estim-
ated to be h0 = 18 nm. Depending upon the failure strain �p of protein, the flaw
tolerance size of the fractal bone increases to about 1 µm with only one level of
hierarchy, 10–100 µm with two levels of hierarchy, 100 µm–10 mm with 3 levels
of hierarchy, 1 mm–1 m with 4 levels of hierarchy, 100 mm–100 m with 5 levels
of hierarchy, 10 m–10 km with 6 levels of hierarchy, and 102–106 km with 8 levels
of hierarchy. With 16 levels of hierarchy, the dimension of the fractal bone reaches
astronomical sizes towards the edge of universe! These calculations demonstrate the
enormous potential of a bottom-up design methodology on improving the capability
of materials against crack-like flaws.

An implicit assumption made in estimating the hierarchical fracture energies is
that the soft phase undergoes uniform shear deformation until rupture. This requires
the soft phase to be either limited in thickness or sufficiently viscous so that there
is no driving force for an interfacial delamination crack to propagate along the in-
terfaces between the hard and soft phases. In other words, the soft phases have been
assumed to be nearly perfect energy absorbing materials even at large scales.

The present analysis indicates that bottom-up designed hierarchical materials
may be capable of amplifying unique properties of nanostructured materials to mac-
roscopic length scales without size limit. Here we have discussed stiffness, strength
and toughness. Similar issues may exist with other mechanical properties such as
adhesion, friction, hydrophobicity, corrosion, fatigue, and more generally also with
optical, electrical and chemical properties of materials. It can be expected that hier-
archical material design will have strong impact on material science in the future.
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Abstract. We summarize our recent simulation progress of micromanipulation experiments
on RNAs. We mainly consults with two important small RNAs unfolding experiments carried
out by Bustamante group. Our results show that, in contrast to protein cases, using the single
polymer elastic theory and the well-known RNA secondary structure free energy knowledge,
we can successively simulate various behaviors of force unfolding RNAs under different ex-
perimental setups from equilibrium to far-from equilibrium.

Key words: continuous time Monte Carlo method, Jarzynski’s equality, RNA, single-
molecule manipulation.

1 Introduction

Ribonucleic Acid (RNA) is now known to be involved in many biological processes,
such as carriers of genetic information (messenger RNAs), simple adapters of amino
acids (transfer RNAs), enzymes catalyzing the reactions in protein synthesis, cleav-
age and synthesis of phosphodiester bonds [1], and regulators of gene expression
[2]. These diverse and specific biological functions of RNA are guided by their fold-
ing properties. Prediction or measurements of RNA folding and folding dynamics
therefore is one of central problems in biological physics.

Single-molecule manipulation technique developed in the past decade provides
a fresh and promising way in resolving the RNA folding problem [3–7]. As a con-
crete example, an optical tweezer setup is sketched in Figure 1. The advent of the
single-molecule experiments addresses a challenging issue for theorists: whether or
how can we apply the known secondary structural RNA knowledge to explain or pre-
dict the phenomena observed in the single-molecule experiments? Many theoretical
efforts have been devoted to understanding RNA unfolding behaviors under mech-
anical external forces [8–11, 12]. However these theories or models are too simple
to be applied in experiments; useful free energy data about RNA secondary structure
obtained before were often neglected. Moreover, they just studied equilibrium cases,
while intriguing nonequilibrium phenomena were beyond their scopes. Simulation
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Fig. 1. Sketch of an optical tweezer setup and the native states of RNA molecules, P5ab,
p5abc�A, and P5abc studied in the work. RNA molecules are attached between the two beads
(larger black points) with a RNA:DNA hybrid handle (the black dash curves). The center of
the light trap is moved with velocity v. Here z(t) = xtw + xds + xss is the distance at time
t between the centers of the light trap and the bead held by the micropipette. In practice, the
RNA is attached between the two beads with two hybrid handles. To simplify the simulation
method, we here only consider one handle; it should not drastically change our discussion.

method should be a good choice to overcome these shortcomings. But we noted that
the simulations for RNAs are few [3]. To fill this gap, we developed a stochastic
kinetic method to investigate the intriguing issue [13, 14]. Here we summarize our
previous efforts about it.

2 Model and Method

Figure 1 is the sketch of a mixed ensemble. The position of the center of the light trap
is moved according to a time-dependent relationship z(t) = z0 + vt , where z0 is the
offset at time t = 0. We denote the system in i-state at time t by three independent
quantities, xss , xds , and the RNA secondary structure S, i.e., (Si , x

ds
i , xss

i )t . Hence,
the unfolding of the single RNA proceeds in a space S(S) × Rds × Rss , where S(S)
is the set of all secondary structures of a given RNA sequence S, Rds = (0, lds) and
Rss = (0, lss), and lds and lss are the contour lengths of the handle and the RNA
molecule, respectively. A move set is defined to specify whether two conformations
are accessible from each other by an elementary “move” [14],

(Si , x
ds
i , xss

i )(t) → (Sj , x
ds
i , xss

i )(t ′), i 
= j,
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(Si , x
ds
i , xss

i )(t) → (Sj , x
ds
i ∓ δ, xss

i ± δ)(t ′),
(Si , x

ds
i , xss

i )(t) → (Sj , x
ds
i ± δ, xss

i )(t ′). (1)

The first kind of the moves is the removal or insertion of single base pairs [15] while
fixing the extensions xss and xds . The other two kinds are to respectively move the
positions of the end of the handle and the end of single-stranded RNA with a small
displacement δ (1 Å here) while the secondary structure is fixed simultaneously.

Given the system state i at time t , the system energy can be written as

Ei(t) = �G0
i + utw(xtw

i ) + Wds(xds
i ) + Wss(xss

i , ni), (2)

where �G0
i is the free energy obtained from folding the RNA sequence into the

secondary structure Si , and the last three terms are the elastic energies of the optical
trap, the handle, and the single-stranded part of the RNA [14], respectively. The light
trap here is simply assumed to be a harmonic potential with spring constant ktw.
Therefore the loading rate here is r = ktwv.

In the real experiments, constant force can be imposed on RNA molecules with
feedback-stabilized optical tweezers capable of maintaining a preset force by moving
the beads closer or further apart (the constant force ensemble). Therefore the energy
of the light trap in Equation (1) is simply replaced by −f (xds

i + xss
i ).

Given the move sets and the unfolding conformational spaces, the RNA unfold-
ing for the two ensembles can be modeled as Markov processes in their respective
spaces. We make use of continuous time Monte Carlo algorithm (CTMC) [16, 17]
to simulate the processes. To realize simulation, transition probabilities have to be
defined. We assume that the transition probabilities satisfy the symmetric rule [18]

ktij = τ−1
0 exp[−(Ej(t) − Ei(t))/2β], (3)

where τ0 scales the time axis of the unfolding process from the experimental meas-
urements. Apparently, the transition probabilities satisfy the detailed balance condi-
tion locally in time [19].

If the moving velocity of the light trap vanishes, an exact partition function
method can calculate the molecular average extension and the average force un-
der the given distance z [10]. Different from the experimental measurements of the
free energy with slow pulling velocity (quasi-equilibrium process) [6], we obtain the
equilibrium information by this exact method.

We simulate and calculate the force unfolding single RNAs at the experimental
temperature T = 298 K. The elastic parameters used are from single molecule exper-
iment: pds = 53 nm, lds = 320 nm, bss = 0.56 nm, Kuhn length of single-stranded
part of RNAs Kss = 1.5 nm, and ktw = 0.2 pN/nm [5]. The free energy parameters
for the RNA secondary structures are from the Vienna package 1.4 [20].
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Fig. 2. Comparison of the exact and simulation force-extension curves in equilibrium for P5ab,
P5abc�A and P5abc on the mixed (A) and the constant force (B) ensembles. The different
symbols are from the simulation methods, and the different lines are from the exact methods.
Inset, force-extension curves for the same ensemble recalculated by another move set.

3 Results and Discussion

3.1 Single RNAs Thermodynamics

A comparison between our simulation in equilibrium and the prediction of the ex-
act partition function method should be helpful in confirming the correctness of our
method. Hence we first simulate the average force-extension curves of the three RNA
molecules for the two ensembles with standard approach: the average physical quant-
ity A is calculated according to 〈A〉 = τ−1

∫ τ

0 A(t)dt , here τ = 106 and we let
τ0 = 1 (see Figure 2). We find that these two independent calculations agree very
well.

3.2 Single RNAs Kinetics

3.2.1 The Mixed Ensemble

Force-extension curves. As an example, we stretch P5ab molecule with the velocity
v = 5 × 10−3 Å from the offset z0 = 350 nm to 450 nm, and then relax it with the
same velocity. One of the time trajectories is showed in Figure 3A.

Record of the force and extension at given times with a slow velocity is a more
common method in the experimental equilibrium measurement. Hence we simulate
the three curves with the two slow velocities 1 × 10−4 Å and 1 × 10−5 Å. We only
show the data per unit times 105 and 106 (see Figures 3C and 3D). For the faster ve-
locity, we find that, except P5ab case, the unfolding forces for the others do not equal
the equilibrium values; whereas for the later, the curves of simulations consist with
the exact curves. It means that the unfolding of the three molecules with 1 × 10−5 Å
is or near equilibrium. We note that, although the whole extension z(t) monoton-
ically increases with time, the extensions of the molecules may still jump between
two values, such as P5ab and P5abc molecules. Indeed similar phenomena were also
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Fig. 3. (A) One of the time trajectories of unfolding and refolding for P5ab with velocity
5 × 10−3. (B) Figure 2A is showed here again. (C) The unfolding force-extension curves
recorded at unit time for the molecules with velocity 1 × 10−4 Å. (D) The force-extension
curves recorded at time unit 106 with velocity 1 × 10−5 Å. Apparently, the unfolding and
refolding trajectories are not coincident, i.e., a force-hysteresis occurs. It also indicates that
the molecule is driven from thermodynamic equilibrium [5].

observed in the experiment [5]. They indicate the fluctuations of the extension and
RNA structures under the force.

In the experiment [5, 6], the unfolding P5abc are near-equilibrium and far from
equilibrium at the loading rates 2–5 pN/s and 34–52 pN/s, respectively (similar
values for Pabc�A). And our simulations also show that the unfolding the same
molecule are near-equilibrium and far from equilibrium at the velocities 1 × 10−5 Å
and 1 × 10−4 Å, respectively. Let them be equal correspondingly we then can
estimate the constant τ0 ≈ 10−7 sec. We will scale the time with this parameter
below for convenience.

Free energy reconstruction. Hummer and Szabo [21] extended the remarkable Jar-
zynski equality [22] to extract unperturbed molecular free energy landscape G0(x)

along the molecular extension x by the following expression

G0(x) − G(0) = −β−1 ln〈δ(x − xt )e
−β�wt 〉, (4)

where �wt = wt − ktw(x(t) − vt)2/2, G(0) is the free energy of the whole system
in equilibrium at initial time t = 0, and

wt = ktwv(vt2/2 + z0t −
∫ t

0
x(t ′)dt ′). (5)

We use their result to reconstruct the free energy landscapes of P5ab and P5abc at
two loading rates 20 and 40 pN/s (see Figure 4). The precisions of reconstructions
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Fig. 4. Comparison of the free energy landscapes of the two molecules P5ab and P5abc re-
constructed by Equation (5) and the exact landscapes calculated from the partition function
method. The number of trajectories for each case is 1000. The insets are the free energy land-
scapes of the system composed of the molecules and the light trap potential, which are also
from partition function method.

are satisfactory. We note that the landscapes are unexpectedly trivial: neither of them
presents energy barrier. Ritort et al. [23] have investigated the Jarzynski’s equality
by modeling RNA molecules as a two-level system with an intermediate barrier. Our
calculations apparently contradict their assumption. In fact, the strong unfolding-
refolding cooperativity observed in the experiments [5, 6] arises from the coupling
of the RNA molecules and the light trap; the addition of their potentials is a two-level
system (see the respective insets in the figure). Therefore, although the two-level
system is a good approximation in RNA folding study, should not be simply copied
to the force unfolding cases.

3.2.2 Constant Force Ensemble

Liphardt et al. [5] imposed a constant force on P5ab. They found that, when the force
was held constant at the transition within about 1 pN, P5ab switched back and forth
with time from the folded hairpin to the unfolded single strand. We choose another
move set to investigate the phenomenon to enhance simulation efficiency [13]: we
keep the first kind of moves in Equation (1) as the new move set. Therefore in the
ensemble Equation (2) is simplified as �G0

i − Wss(ni, f ), where the second term
is the elastic free energy contribution of the single-stranded part of the RNA in the
structure Si under force f . Here we neglect the double-stranded handle since under
constant force the handle can be viewed as one part of the feedback mechanism. Note
the extension now recorded is xss(f, ni).

The inset in Figure 2B shows the force-extension curves for the three RNA mo-
lecules with new move set in equilibrium. Except the regions before transitions where
the elastic property of the handle dominates, the shapes of the curves and the values
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Fig. 5. Simulations for RNA p5ab kinetics: (A) Extension versus time traces of the molecule
at a force in equilibrium, here the unit of time is τ0; (B) and (C) are the frequency distributions
of the lifetimes of the single stranded at 14.2 pN, respectively.

of unfolding force obtained by the two different simulation methods are almost the
same. We then record the extension-time traces of the RNA molecules at different
constant forces in equilibrium, here ionic correction are took into account to compare
with the real data [24]. For example, one extension-time traces at force 14.8 pN for
P5ab without Mg2+ is shown in Figure 5A.

We indeed find that the extension of the molecule jumps between about two val-
ues, 5 nm and 22 nm around the unfolding force. Considering that the jumps are
extremely rapid with respect to the lifetimes of the molecule in the two states, we
simply classify the states whose extensions are larger than 15 nm as the single stran-
ded states, and the others as the hairpin states. Around the unfolding the frequencies
of the different lifetimes at the two states can be obtained by a long time simulation
(the simulation time is 109τ0 for each trajectory after equilibrium). Figures 5B and
5C show the frequency distributions of a typical simulation at force 14.2 pN. These
distributions can be well fit to an exponential function ∝ exp(−t〈τi〉) very well,
where 〈τi〉, i = u, f denote the force-dependent average lifetimes at the two states,
respectively. We calculate all average lifetimes near the unfolding force of P5ab, and
their corresponding values with different forces are shown in Figure 6.

We find that the logarithms of the lifetimes for the two states are strikingly con-
sistent with linear functions of the forces. Because the reaction rate constants are the
inverse of the average lifetimes, we fit τ0 by making 〈τu〉(f ∗) = 〈τf 〉(f ∗) equal to
the experimental value 1/k∗, here k∗ ≡ kf = ku. We have τ0 = 2.6 × 105 sec−1. A
comparison of the simulation results and the experimental data is listed in Table 1.
The striking consistence of our results with the experiment assures us that the RNA
folding and unfolding model proposed here has grabbed the main physics.
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Fig. 6. Logarithm of the average lifetimes of the single stranded and hairpin states for p5ab
molecule at difference forces around the unfolding with (cross symbols) and without Mg2+
(close symbols). The time is in unit τ0.

Table 1. Simulation results for P5ab compared to the experimental data from [5] (in bold).
The minor difference between the simulation data listed here and the data in [13] is due to
different ionic corrections applied.

Molecule 〈�x〉 (nm) f ∗ (pN) ln kf (f ) (s−1) ln ku(f ) (s−1)
P5ab, Mg+2 10 14.5 41 − 2.8f −39 + 2.9f
P5ab, by us 20.0 14.7 39.4 − 2.6f 30.1 + 2.2f
P5ab, EDTA 18 13.3 37 − 2.7f −32 + 2.6f
P5ab, by us 20.0 14.2 35.7 − 2.4f −28.3 + 2.1f

4 Conclusion

Compared to the enormous kinetic simulations of the force unfolding proteins, the
effort contributed to RNA is relatively little. To fit the gap, we developed a kinetic
stochastic simulation to the force unfolding single RNAs. The most advantage in
study of force unfolding RNAs is that the knowledge accumulated in the past forty
years for RNA secondary structure provides a solid fundament for theoretical pre-
dictions (including kinetics and thermodynamics) in practice. Therefore, we believe
that our model would be useful in RNA biophysical studies in the future.
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Abstract. The interaction of nano particulates with conventional materials generally has the
effect of dramatically changing all the physical parameters of the material, which normally
characterize the bulk material. The nanoparticles themselves constitute highly reactive isol-
ated sites, to the extent that the electronic structure of the nano composite is changed, and
accordingly all the physical properties, such as thermal, mechanical, electrical, magnetic and
optical become different from those of the bulk materials. In fact generally, the smaller the
particles, the greater the quantum effects, which means greater changes to the bulk physical
properties of the nano-composite, and this phenomenon is widely accepted as not being prop-
erly understood. Nanofluids are simply standard fluids such as water, engine oil, ethylene
glycol and toluene, but including a small volume percentage, usually less than 5% of evenly
dispersed nanoparticles, which are usually metallic. In this paper, we present a survey of some
of the attempts to model the enhanced thermal conductivity of such nanofluids, and address
issues such as the nanoparticles themselves, the surrounding layer, cluster structure, the fluid
environment, and the different heat transport processes at the micro and nano scales.

Key words: heat transfer, thermal conductivity, mathematical model, nanoparticle, nano-
layer, cluster, nanofluid.

1 Introduction

Engineers have been working for decades to develop efficient heat transfer fluids
for car motors and industrial equipment. With the ongoing technology development
of miniaturization of both microelectro mechanical and microfluidic devices, there
is a growing interest in higher thermal conductivities of heat transfer fluids in in-
dustry. Traditional heat transfer fluids, such as water, oil, and ethylene glycol mix-
ture are inherently poor heat transfer fluids. Since most solid materials have higher
thermal conductivities than those of fluids by many orders of magnitudes, one way
of improving the thermal properties of energy transmission fluids is to suspend solid
particles in the fluids. Conventionally, the suspended particles are usually micromet-
ers or even millimeters dimensions, but such large particles may cause some severe
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abrasion, settling and clogging problems in micro channels. Therefore, conventional
working fluids with suspended large particles have limited practical applications in
heat transfer enhancement, and are unsuitable for the newly emerging “miniatur-
ized” technologies. With the advent of nanotechnology, it has become possible to
manufacture nano size particles and the resulting nanofluids constitute a new class
of fluids which were first defined by Choi (1995). Nanofluids are formed by the dis-
persion of nanoparticles into conventional heat transfer liquids. The most common
nanoparticles for nanofluids are generally metallic, metallic oxide and non-metallic.
The size of the nanoparticles used are generally below 100 nm and the nanoparticle
volume fraction in the nanofluids ranges from the almost vanishing value 0.00026%
to 10%. These particles, due to their extreme size, can form a very stable colloidal
system. The concept of using nanofluids in heat transfer equipments is attractive
and straightforward and there are two important features: (i) high thermal conduct-
ivity; (ii) high stability and no sedimentation problem. The primary reason for these
features arises from larger surface area of nanophase powders relative to those of
conventional powders, which not only markedly improves heat conduction transfer
capabilities, but also increases the stability of suspensions.

The first significant heat transfer enhancement with nano-sized particles was re-
ported by Masuda et al. (1993) in Japan. They demonstrated that the thermal con-
ductivity of ultra fine suspensions of alumina with an average diameter 13 nm, silica
and other oxides in water increased the thermal conductivity by a maximum amount
of 30% for particle volume fraction of 4.3%.

In a series of experiments performed at the Argonne National Laboratory to in-
vestigate superior heat transfer capabilities of this new class of engineered fluids,
Lee et al. (1999) measured the thermal conductivity behaviour of four oxide nan-
ofluids (Al2O3 of diameter 38 nm and CuO of diameter 24 nm in both water and
ethylene glycol), and reported more than 20% of enhancement of thermal conduct-
ivity at a volume fraction of 4% for the copper oxide/ethylene glycol system. They
also noticed that for nanofluids using the same nanoparticles, the conductivity ratio
increases for the ethylene glycol nanofluids system are always higher than those of
the water nanofluids system.

Wang et al. (1999) reported enhanced thermal conductivities for the Al2O3
powder (diameter 28 nm) and CuO powder (diameter 23 nm) with base fluids water,
ethylene, engine oil and vacuum pump fluid. The experimental data showed that for
a given volume fraction, and the same nanoparticle, the increases in thermal con-
ductivity in ethylene glycol and engine oil are their highest, whereas for the pump
fluid it is the lowest. Both Wang et al. (1999) and Lee et al. (1999) observed that
the thermal conductivity enhancement increases as the particle size decreases, and
that enhancement increases almost linearly with volume fraction in the low volume
fraction range up to 10%.

Eastman et al. (2001) showed that 10 nm copper particles in ethylene glycol
could enhance the thermal conductivity by 40% with very small particle loading
fraction 0.3%. Using CuO (35 nm diameter), the maximum enhancement was 20%
for a volume fraction of 4%.
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Xie et al. (2002) measured the thermal conductivities of Al2O3 suspensions to in-
vestigate the effects of the pH value on the aqueous suspension, the specific surface
area of the dispersed particles and the crystalline phase of the solid phase. Their res-
ults showed that the enhanced thermal conductivity ratio decreased with an increase
in pH value. For the Al2O3-ethylene glycol suspension, the thermal conductivity can
be enhanced by more than 29% at a volume fraction of 5%. For the suspensions using
the same base fluid, the enhancements of the thermal conductivities are dependent on
the specific surface area, with an optimal specific surface area for the highest thermal
conductivity.

Choi (2001) showed that multi walled carbon nanotubes in a synthetic poly oil
can increase the effective thermal conductivity of the base fluid by a factor of 2.5, us-
ing only a volume percentage of nanotubes of approximately 1%. Patel et al. (2003)
reported an 11% enhancement of heat conductivity for almost vanishing volume frac-
tion of 0.008% for gold particles with a thiolate covering in toluene. Hong et al.
(2005) found that thermal conductivity of a Fe nanofluid is increased nonlinearly up
to 18% as the volume fraction of particles is increased up to 0.55%. Fe nanofluids
showed a more effective thermal transport property than Cu nanofluids dispersed
with little agglomeration.

In the investigations mentioned above, the thermal conductivities were measured
at room temperature. Das et al. (2003) measured Al2O3 and CuO suspensions in
water for different temperature ranging from 20◦C to 50◦C for particle loading of 1%
to 4%. A two to four fold increase in thermal conductivity enhancement of nanofluids
with temperature increase was observed.

The above examples illustrate the possible high increases of thermal conductiv-
ity of nanofluids and the practical significance of properly understanding this phe-
nomenon. However, the observed conductivity enhancements for nanoparticle sus-
pensions are greater than those predicted by the existing classical theories such as
the Maxwell theory (Maxwell, 1904) and Hamilton–Crosser model (Hamilton and
Crosser, 1962). For example, the measured enhancement in thermal conductivity
for 1.0 vol% nanotubes in oil is 160%, while the enhancements predicted by the
theoretical model are not more than 10% (Choi et al., 2001). It is also found that
the thermal conductivity of a nanotube nanofluid varies nonlinearly with the nan-
otube volume fraction, while all theoretical predictions clearly show a linear rela-
tionship between thermal conductivity enhancements and nanotube volume fraction.
These results demonstrate that traditional theoretical models are not capable of prop-
erly explaining the thermal conductivity enhancement of nanofluids, and the funda-
mental limitations of the conventional models. Thus, understanding certain funda-
mental phenomena of heat transfer in nanofluids becomes essential. In this paper, we
undertake a systematic survey of modelling endeavours for thermal conductivity of
nanofluids and we outline existing models.
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2 Theoretical Models of Thermal Transport in Nanofluids

Considerable research has been undertaken on modelling the effective thermal con-
ductivities of liquids with solid particle inclusions dating back to the pioneering of
Maxwell work more than a century ago. In recent years, numerous phenomenolo-
gical models have been developed in an attempt to accurately predict the thermal
conductivity of nanoparticle suspensions. Experimental data shows that the thermal
conductivity behaviour of a composite fluid can be strongly dependent on the fol-
lowing factors:

(i) thermal conductivity of particles,
(ii) thermal conductivity of liquid,
(iii)particle volume concentration,
(iv)particle size,
(v) particle shape,
(vi)temperature.

Modelling the nanofluid structure has been closely examined by many investigat-
ors in recent years. Strictly speaking, a nanofluid is a multi-phase system consisting
of the host liquid and percolation patterned cluster inclusions. We assume there are
core- nanoparticles, and then there is the molecule-levelled layering of liquid called
a nanolayer, formed at the particle/liquid interface. The transport among components
of equivalent nanoparticles (nanoparticle-nanolayer) leads to inter-particle collisions,
and attachments of colliding nanolayers leads to nanoparticle clusters. The enhance-
ment of thermal conductivity can be considered as heat conduction from these liquid
mediated clusters with different shapes, sizes and surface areas.

The main reasons for the enhanced heat transfer characteristics may be summar-
ized as follows:

(a) the suspended nanoparticles increase the surface area and the heat capacity of the
fluid,

(b) the suspended nanoparticles themselves have higher thermal conductivity than
that of the base fluid,

(c) the organized nanolayer developed on the solid/liquid interface facilitates the
transport of energy across the interface,

(d) the interaction and collision among particles, fluid and the flow passage surface
are strengthened,

(e) the mixing fluctuation and turbulence of the fluid is intensified,
(f) thermal diffusion becomes ballistic heat conduction due to the characteristic

length scales associated with heat carriers, i.e., the mean free path and the wave-
length, are comparable to the characteristic lengths of the nanostructure.

The development of existing theoretical models for the thermal conductivity of
nanofluids may be divided into two categories:

(1) those using core-layer-medium theory for multiphase systems,
(2) those recent phenomenological models based on the effect of random Brownian

motion.
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In the following sections, we discuss each of the heat transfer mechanisms and
we give details of the some models for nanofluid structure, starting from the nano-
particles themselves, from the nanoparticle body to an adjacent layer, then clusters,
and finally thermal conductivity of a fluid-clusters mixture.

3 Thermal Conductivity of Nanoparticles

The first step in formulating a theoretical model of thermal conductivity for nano-
fluids is to determine the thermal conductivity of nanoparticles kp correctly. On the
macroscale, heat conduction is typically treated as a diffusion process which is gov-
erned by Fourier’s law. It is well known that on the microscale regime, the thermal
conductivity of a thin film material/superlattices is much less than its bulk value kb,
which is due to the scattering of the primary carriers of energy (phonons and/or elec-
trons) at its boundary (Majumdar, 1998). The intrinsic thermal conductivity of the
nanoparticles should therefore be reduced in comparison to that of bulk materials.
When the mean free path of the heat carriers is comparable with the size of nano-
particles, i.e. 10-100nm, there is not enough scattering events in the medium for the
phonons to transport energy. Hence, the applicability of the Fourier’s law becomes
questionable and we need to turn to the Boltzmann equation to describe the heat
transfer process. Chen (1996) showed that the thermal conductivity of non-metallic
nanoparticles kp can be approximated from the bulk value kb by

kp = 3rp
3rp + 4�

, (1)

while for metallic nanoparticles Nimtz et al. (1988) showed that

kp =
(

2rp
5 × 10−6

)3

kb, (2)

where rp is the radius of the nanoparticle and � is the mean free path of the phonons.

4 Maxwell’s Theory

The work of Maxwell (1904) was the first theoretical approach to calculate the effect-
ive thermal conductivity for a random spherical particle suspension. Heat conduction
is the transfer of heat from one substance to another by direct contact. Just as for the
movement of electric current through a material in response to an electric field, the
underlying mechanism for the movement of heat depends on the two materials. Max-
well’s equation, Equation (3), was first derived from the electric permeability calcu-
lation for a compound medium on the basis of potential theory. Maxwell’s model is
applicable to dilute suspensions for volume fraction ϕ < 1 in a homogeneous host
medium, where the particles are considered to be isolated in the host medium, so that
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no interactions exist among them. The prediction of the effective thermal conductiv-
ity keff from Maxwell’s equation is accurate to order ϕ.

keff

kf
= 1 + 3(kp − kf )ϕ

kp + 2kf − (kp − kf )ϕ
, (3)

where kf is thermal conductivity of liquid. Much later, Maxwell’s equation was ex-
tended to the second-order by several authors. Bruggeman (1935) analysed the in-
teraction among the randomly distributed particles and proposed a model using a
mean field approach. For a binary mixture of homogeneous spherical inclusions, the
Bruggeman model is described by the equations below

ϕ
kp − keff

kp + 2keff
+ (1 − ϕ)

kf − keff

kf + 2keff
= 0, (4)

where the solution of the above quadratic equation is given by

keff = [(3ϕ − 1)kp + (2 − 3ϕ)kf + √
�]/4, (5)

and where � is defined by

� = [(3ϕ − 1)kp + (2 − 3ϕ)kf ]2 + 8kpkf . (6)

We note that the Bruggeman model has no restriction on the suspended particle
volume concentration ϕ, and that Maxwell’s model fails to predict experimental res-
ults for high particle concentration, while the Bruggeman model fits the experimental
data well.

It has been found that the thermal conductivity of suspensions depends not only
on the volume concentration of the particles, but also on the shape of the dispersed
particles. Hamilton and Crosser (1962) develop an elaborate model to include the
shape of the dispersed particles in Maxwell’s equation. Their empirical shape factor
is given by n = 3/� , where � is sphericity, defined as the ratio of surface area of a
sphere (with volume equal to that of the particle) to surface area of the particle, and
then the conductivity of two-component mixtures can be calculated as follows:

keff

kf
= 1 + n(kp − kf )ϕ

kp + (n − 1)kf − (kp − kf )ϕ
, (7)

and Equation (3) arises from the value n = 3. Comparison between experimental
results and those of the Hamilton–Crosser model show that the model can predict the
thermal conductivity of nanofluids containing large agglomerated particles (Lee et
al., 1999). The model also shows that non-spherical shapes increase the conductivity
above that of spheres. However, the model predictions begin to diverge from the
experimental data at low volume fractions, which strongly suggests that not only
particle shape but also size is dominant in enhancing the thermal conductivity of
nanofluids.

110



www.manaraa.com

Modelling the Thermal Conductivity of Nanofluids

Fig. 1. Nanoparticle with nanolayer at solid/liquid interface, (a) sphere, (b) ellipsoid.

5 Thermal Conductivity of Nanoparticles with Nanolayer

It has long been known that liquid molecules close to a solid surface form layered
solid like structure, but little is know about the connection between this nanolayer
and the thermal properties of the suspension. Keblinski et al. (2002) explored pos-
sible explanations for the anomalous increase of thermal conductivity and their ana-
lysis demonstrated that molecular-level layering of the liquid at the solid/liquid inter-
face could play a significant role in interaction of dynamic nanoparticles with base
fluid molecules. As the atomic structure of the liquid layering is significantly more
ordered than that of bulk liquid, liquid layering at the interface would be expected
to lead to a higher thermal conductivity than liquid and becomes a thermal bridge
between nanoparticles and the surrounding fluid. In addition, the interfacial layer
thickness results in a larger effective volume fraction of the particle-layered-liquid
structure which would tend to enhance thermal conductivity.

Yu and Choi (2003) proposed a renovated Maxwell model to include the effect
of the nanolayer on the effective thermal conductivity, and they assumed that a solid-
like layer of thickness h around the particles of radius rp which combines with the
particle to form an equivalent particle of radius rp+h (see Figure 1a). Notice however
that their assumed layer thickness is a variable.

The increased volume concentration ϕe can be calculated from ϕe = ϕ(1 + β)3,
where β = h/rp. This nanolayer is more ordered than the bulk liquid and the thermal
conductivity of the layer klayer is higher than that of the bulk liquid but lower than
that of the nanoparticles. From an effective medium theory, the equivalent thermal
conductivity kpe of equivalent particles which include a thermally bridging nanolayer
may be calculated as (Schwartz et al., 1995)

kpe = [2(1 − γ ) + (1 + β)3(1 + 2γ )]γ
−(1 − γ ) + (1 + β)3(1 + 2γ )

kp, (8)

where γ = klayer/kp, and the Maxwell equation can be modified to become

keff

kf
= 1 + 3(kpe − kf )(1 + β)3ϕ

kpe + 2kf − (kpe − kf )(1 + β)3ϕ
. (9)
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This renovated Maxwell model is limited to those suspensions with spherical
particles. Recently the Hamilton–Crosser model has been extended by Yu and Choi
(2004) for suspensions of nonspherical particles to include the effect of a solid/liquid
interface. The solid/liquid interface is described as a confocal ellipsoid with a solid
particle (see Figure 1b). They suppose that the outside of the solid ellipsoidal particle
and its surrounding layer can be described by the equation

x2

a2 + υ
+ y2

b2 + υ
+ z2

c2 + υ
= 1, (10)

where υ = 0 for the outside surface of the solid ellipsoid, υ = t for the outside
surface of its surrounding layer, and a, b and c are the semi-axes of the ellipsoid.
The volume ratio is defined by

e0 = volume of particle plus layer

volume of particle
=
√
(a2 + t)(b2 + t)(c2 + t)

abc
, (11)

leading to an increased volume fraction ϕe = e0ϕ and we refer the reader to Yu et al.
(2004) for further details.

The input data required in the renovated Maxwell model and the renovated
Hamilton–Crosser model are the thickness of the nanolayer h and the thermal con-
ductivity of the nanolayer klayer. As kf < klayer < kp, by assuming klayer to its
lowest and highest values, we may study the lower and upper bounds of the effect-
ive thermal conductivity of nanofluids. Yu and Choi (2003) found that the nanolayer
thickness is more important to thermal conductivity enhancement than klayer. The
dramatic thermal conductivity enhancement with smaller nanoparticles (< 10 nm)
is attributed primarily to the increased volume fraction by the nanolayer. This sug-
gests that the existence of a thermally bridging nanolayer is a new mechanism for
enhancing thermal conductivity of nanofluids.

The adsorption of liquid molecules on the particle surface can be considered as a
monolayer with a hexagonal closed-packed style. The following evaluation method
for the thickness of the adsorption layer developed by Yan et al. (1986) has been used
in the model of Wang et al.’s model (2003)

h = 1√
3

(
4Mf

ρfNa

)1/3

, (12)

where Mf is the molecular weight of liquid, ρf is the density of liquid, and NA is
the Avogadro constant (6.023 × 1023/mol). Experiments and simulation have shown
a typical interfacial width is only on the order of a few atomic distances, i.e., that is
approximately 1 nm, but 1 nm thickness of layered-liquid is not enough to double
the effective volume of a particle. Thus, although the presence of an interfacial layer
may play a role in heat transport, it is not likely to be the sole contributor for the
enhancement of thermal conductivity.
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6 Thermal Conductivity of Nanoparticle Clusters

As mentioned previously, it is believed that clustering could significantly effect the
enhancement of thermal conductivity. Keblinski et al. (2002) were first to discover
the nature of heat transport in nanoparticles. They used the Debye theory to demon-
strate that the macroscopic theory of diffusive heat transport is invalid in a nano-
particle and they suggested that due to Brownian motion, the particles are in con-
stant motion and move close together even at low packing faction, and thus enhance
coherent phonon heat flow among the particles. They demonstrated significant en-
hancement of the effective thermal conductivity from liquid mediated clusters, which
have an increased particle surface area and an effective volume of highly conduct-
ing clusters for heat transfer. The effective volume of a cluster can be much larger
than the physical volume of the particles. Within such an effective volume of cluster,
all particles do not need to be in physical contact with each other, but just within a
specific distance, which allows for heat flow between them.

Accordingly, it is necessary to include the effect of clustering in the modelling
of the effective thermal conductivity of nanoparticles suspension. The results of the
nanoparticle clusters should reflect a picture of a nanoparticle cluster whose conduct-
ivity is a monotonically decreasing function of radius (or number of cluster particles).
Fractal theory can successfully describe the disorder and stochastic process of clus-
tering and polarization of nanoparticles. The basic idea of the model is that a cluster
is self-similar on the average, whose nanoparticle portion is connected at every stage
of its evolution, and which therefore remains conducting no matter how small the
nanoparticle volume fraction (Hui et al., 1986).

Scaling theory is commonly used for the quantitative description of a fractal sys-
tem, and the fractal dimension Df and a scalar with unit ε, are the basic variables
for the description of a fractal system. The resultant properties such as volume, area,
particle number, etc. of the fractal is a function F(ε) of a scalar unit ε, and is ex-
pressed as F(ε) = CεDf , where C is a shape factor which is independent of ε.
Different fractal indexes Df are needed when describing different phenomena of
complex fractals. Some authors use fractal theory to describe the cluster of nano-
particle suspensions to predict the effective thermal conductivity. Xuan et al. (2003)
introduce the effect of nanoparticle aggregation structure in their theoretical model
of thermal conductivity of nanofluids and the radius of the clusters is included in the
equation.

Wang et al. (2003) applied the fractal model in the nanofluid CuO/water. They
proposed that the nanoparticles are distributed in fractal clusters in composites.
The equivalent nanoparticle volume fraction in fractal clusters is a function of the
fractal cluster of radius R. Hence, the volume fraction ϕf r(R) of nanoparticles in
the clusters is given by ϕf r(R) = (R/rp)

Df −3, where Df is fractal dimension, R
is the equivalent radius of cluster and rp is the radius of nanoparticle. The fractal
dimension Df for the clusters was determined from electron microscopic photos of
clusters in suspension and its value is in the range of 1.73 to 1.81.

The drawback of the fractal models is the need for the transmission electron
microscopy photo or computer simulation image of the clusters in suspension to

113



www.manaraa.com

P. Tillman and J.M. Hill

reveal an aggregation structure. From the images, the fractal index of cluster Df is
determined, but this can be quite computationally expensive.

Knowledge of the volume fraction ϕf r(R) of nanoparticles in the cluster and the
thermal conductivity of equivalent particles kpe, which include a thermally bridging
nanolayer, the effective thermal conductivity of cluster kcl can be determined from an
effective medium theory such as the Maxwell or the Bruggeman model for a binary
mixture of homogeneous spherical inclusions. On substituting ϕf r(R) for ϕ and kpe

for kp into the Maxwell Equation (3) or the Bruggeman Equation (4), the effective
thermal conductivity of the cluster can be expressed as a function of the radius of
cluster kcl = kcl(R). The final effective thermal conductivity keff of the nanofluid
can be obtained by including the cluster size distribution function in the Maxwell
equation through integration (Wang et al., 2003).

7 Recent Phenomenological Models

The heat transfer is a microscale energy transport phenomenon in nature. The com-
mon fundamental assumption in the traditional theoretical approaches to the conduct-
ivity of solid-fluid suspensions is that the discrete particles are essentially motionless
in a continuous material. This assumption works well for particles embedded in a
solid matrix or large particles suspended in a fluid matrix. However, the suspended
nanoparticles in a base fluid are generally in random motion under various acting
forces, such as Brownian force and the London–Van Der Waals force. The random
motion of the suspended nanoparticles strengthens energy transport inside the li-
quid. Many recent researchers deal with investigations on the possible mechanism
of energy transport enhancement and have derived theoretical models based on the
phenomena in nature. Wang et al. (1999) proposed that the total increase in thermal
conductivity by the Brownian motion of particles �keff consists of the increases due
to both translational �keff,t and rotational motions �keff,r respectively. The values of
�keff,t and �keff,r are dependent on the Peclet number. Their calculation shows that
up to a volume fraction of 10%, the thermal conductivity increased by the Brownian
motion is less than 0.5% for the Al2O3 fluid mixture. It indicates that heat trans-
fer by advection of nanoparticles is less than that transferred by diffusion. In other
words, when the particles move in liquid, the temperature of particles quickly equi-
librate with that of the surrounding fluids due to small size of the particles. Therefore,
Brownian motion does not contribute significantly to the energy transport in nano-
fluids.

Due to Brownian motion, some recent phenomenological models of effective
thermal conductivities are proposed consisting of two parts: (i) stationary model;
(ii) moving particle model. Xuan et al. (2003) simply add the heat transport con-
tribution from the random motion of the suspended nanoparticles on the Maxwell
equation as below:
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keff

kf
= 1 + 3(kp − kf )ϕ

kp + 2kf − (kp − kf )ϕ︸ ︷︷ ︸
Maxwell

+ ρpϕcp

2kf

√
kBT

3πrcη︸ ︷︷ ︸
Brownian motion

, (13)

where T is temperature, ρp is density of particle, cp is the specific heat capacity
per particle, J/(kg.K), kB is the Boltzmann constant, rc is the apparent radius of
clusters, η is the fluid viscosity, kg/(s.m). Xuan’s model shows that the effective
thermal conductivity of nanofluids is proportional to

√
T and inversely proportional

to
√

rc.
Kumar et al. (2004) proposed a comprehensive model based on the existing un-

derstanding of the heat transport under the continuum level phenomenological for-
mulation. In their model, the diffusive heat transport is assumed to valid in both li-
quid and solid phases. The standard diffusive heat transport equation comprises heat
transfer processes occurring in both liquid and solids as below:

q = −kfAf

(
dT

dx

)
f

− kpAp

(
dT

dx

)
p

. (14)

The geometrical effect of an increase in surface with a decrease in particle size, ra-
tionalized using a stationary particle model, explains the conductivity enhancement.
The moving particle model developed from the Stokes–Einstein formula accounts for
the temperature effect. The effective thermal conductivity of nanofluids can therefore
be expressed as

keff

kf
= 1 + c

(
kBT

2πηr2
p

)
ϕrf

kf (1 − ϕ)rp
. (15)

From the kinetic theory, c can be evaluated by c = n�cp/3, where n is the particle
concentration, � is the mean free path. From the Debye model for the particle, cp =
3NkB , where N is the number of atoms. Kumar et al.’s (2004) theoretical model
shows that the thermal conductivity enhancement is inversely proportional to the
radius of the particle rp . The temperature dependence is attributed to the variation
of Brownian motion velocity for the particles, which varies in proportion to T/η.
keff is a function of the variables kf , kp, T , ϕ, rf , rp. Experimental results for Au
in water, Al2O3 in water and Au in ethylene glycol, strongly support the prediction
of their theoretical model. However, this model shows some inconsistencies with
Xuan’s model (2003) in terms of the relationship with temperature.

8 Conclusions

The aim of the present work has been to outline some existing techniques for theor-
etical models, which have been developed over recent years for studying the thermal
conductivity of nanofluids. The application of the existing models is still in an ongo-
ing development phase and there are limitations, inconsistencies and shortcomings
that need to be overcome, and further applications need to be explored.
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The thermal conductivity of nanofluids is an effective medium property of a mul-
tiphase system. The models reported in this paper show that the effective thermal
conductivity of nanofluids is a function of the thermal conductivities of base fluid
and nanoparticles, nanoparticle size and shape, particle clustering and aggregation
and fluid temperature. The fundamental limitations of conventional heat conduc-
tion models for solid/liquid suspensions, which are rooted in macroscopic transport
laws, such as the Fourier law of heat conduction diffusion have been recognized.
Although the ballistic heat conduction in solid nanostructure is well known, the bal-
listic/diffusive conduction has only briefly been introduced in solid/liquid system.
The core-shell-medium, multi-component models reflect the nanofluid structure and
incorporate the correct thermal conductivity of nanoparticles which have been shown
to be less than that of bulk material. On the other hand, some phenomenological mod-
els are proposed based on the nature of the heat transfer mechanism among fluid and
nanoparticles. The fluid temperature is introduced in this type of models by introdu-
cing random Brownian motion. Fractal theory technique is adopted in some models
to describe self-similar nanoparticle cluster structure and to characterize their size
and other physical properties.

However, there still exists a big gap between the measured and the predicted
thermal conductivities and some results from different models are inconsistent. We
need to develop a more fundamental understanding of heat conduction mechanisms
in nanofluids, and further studies on heat conduction in solid nanostructures and nan-
ofluids are needed in the future. There are difficulties in the accurate determination
of the nanolayer thickness, the thermal conductivity of the nanolayer klayer, and the
cluster size and distribution in the existing models needs to be addressed.
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Abstract. We have compared Brenner’s (1990) interatomic potential and Brenner et al.’s
(2002) second-generation potential on the radius effect of single wall carbon nanotubes. Our
analysis is based on the modified Cauchy–Born rule to incorporate the interatomic poten-
tial into a continuum analysis. The results have shown that Brenner et al.’s (2002) second-
generation potential gives more accurate equilibrium bond length. These potentials also dis-
play rather different radius dependence of the Young’s modulus and simple tension and pure
torsion behavior of single wall carbon nanotubes.

Key words: interatomic potential, carbon nanotubes, radius effect.

1 Introduction

There exist intensive research on the properties of carbon nanotubes (CNTs) in the
past decade. Due to the difficulties of manufacturing and control technologies in ex-
periments, the atomistic simulations are playing an indispensable role in atomic scale
studies. Most of these atomistic simulations, such as molecular mechanics and clas-
sical molecular dynamics, are based on interatomic potentials that provide analytic
potential energy functions and thus the interatomic forces. The continuum theories
based on interatomic potentials are also established, e.g., Arroyo and Belytschko
(2002); Zhang et al. (2002, 2004); Jiang et al. (2003). The most important advantage
of using interatomic potentials is computational efficiency since total energy and in-
teratomic forces can be obtained analytically from interatomic potentials. Among
interatomic potentials for carbon, Brenner’s (1990) interatomic potential for car-
bon and hydrocarbon molecules stands out and has become the most adapted in-
teratomic potential for carbon. This potential has been widely used to study a wide
range of carbon-based structures and chemical processes. Brenner et al. (2002) later
developed a “second-generation” interatomic potential for carbon. In this paper,
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we compare Brenner’s (1990) and Brenner et al.’s (2002) interatomic potentials by
studying the radius effects of single wall carbon nanotubes.

This paper is divided into five sections. We first briefly review Brenner’s (1990)
interatomic potential and Brenner et al.’s (2002) second-generation potential in Sec-
tion 2. The continuum theory for single wall carbon nanotubes based on interatomic
potentials is established in Section 3. We then use Brenner’s (1990) and Brenner
et al.’s (2002) interatomic potential to study several radius dependent properties for
single wall carbon nanotubes, and compare the difference resulting from the use of
different interatomic potentials.

2 Brief Review of Brenner’s (1990) and Brenner et al.’s (2002)
Interatomic Potentials for Carbon

We first summarize Brenner’s (1990) interatomic potential and Brenner et al.’s (2002)
second-generation potential for carbon. All parameters mentioned below are determ-
ined by fitting with known physical properties of various type of carbon and are given
in the original papers.

2.1 Brenner’s (1990) Interatomic Potential for Carbon

The interatomic potential established by Brenner (1990) for carbon takes the form

V = VR(rij ) − BijVA(rij ), (1)

where rij is the bond length between atoms i and j ; VR and VA represent the repuls-
ive and attractive pair terms, respectively, and are given by

VR(r) = D(e)

S − 1
e−√

2S β(r−R(e))fc(r), (2)

VA(r) = D(e)S

S − 1
e
−
√

2
S β(r−R(e))

fc(r), (3)

fc is a cut-off function to restrict the range of interactions among only the nearest-
neighbor carbon atoms,

fc(r) =

⎧⎪⎪⎨
⎪⎪⎩

1 r < R(1),

1
2

{
1 + cos

[
π(r−R(1))

R(2)−R(1)

]}
R(1) < r < R(2),

0 r > R(2),

(4)

Bij represents the multi-body coupling which depends on neighbor atoms through
the bond angle,

Bij =
⎡
⎣1 +

∑
k( 
=i,j)

G(θijk)fc(rik)

⎤
⎦−δ

, (5)
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where k denotes the carbon atoms other than i and j , rik is the bond length between
atoms i and k, and θijk defines the bond angle between carbon bonds i–j and i–k.
The angular function G is given by

G(θ) = a0

[
1 + c2

0

d2
0

− c2
0

d2
0 + (1 + cos θ)2

]
. (6)

2.2 Brenner et al.’s (2002) Second-Generation Interatomic Potential for
Carbon

The second-generation interatomic potential established by Brenner et al. (2002) for
carbon also takes the form in Equation (1). However, the repulsive and attractive pair
terms take the forms

VR(r) =
(

1 + Q

r

)
Ae−αrfc(r), (7)

VA(r) = (B1e
−β1r + B2e

−β2r + B3e
−β3r )fc(r), (8)

where fc is the cut-off function given in Equation (4). One obvious improvement
of the second-generation interatomic potential is that the repulsive term goes infinity
when distance between atoms vanishes; therefore, it can be used to model the process
of atomic collision. On the contrary, the repulsive term in Brenner’s (1990) goes to a
finite value when distance between atoms vanishes.

The multi-body coupling term Bij also takes the same form as that in Equa-
tion (5), except that the angular function G is given by a six-order polynomial spline
function. The detailed fitting process and data can be found in Brenner et al. (2002).

3 A Continuum Theory Based on Interatomic Potentials for
Single Wall Carbon Nanotubes

3.1 Determine the Atomic Position Prior to Deformation

Jiang et al. (2003) developed a method to take into account the effect of CNT chirality
in the continuum analysis. Such a method is briefly summarized here. Figure 1a
shows a schematic diagram of a CNT with the diameter dt . Unlike a planar graphene,
a carbon atom and its three nearest-neighbor atoms on the CNT are not on a plane but
form a tetrahedron because of the curvature effect. Since a CNT can be considered as
a rolled graphene, we map the CNT shown in Figure 1a to a two-dimensional, planar
sheet shown in Figure 1b. The distance between each pair of carbon atoms in the
“unrolled” plane (Figure 1b) is identical to the corresponding arc length on the CNT
(Figure 1a). It is important to point out that Figure 1b is different from a graphene
since the bond lengths may not equal and the bond angles deviate from 120◦.
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Fig. 1. A carbon nanotube (CNT) prior to deformation; (a) a CNT; (b) a planar, “unrolled”
CNT; (c) a representative atom (A) and its three nearest-neighbor atoms (B, C, and D).

Figure 1c shows a representative atom A in the “unrolled” plane along with its
three nearest-neighbor atoms B, C, and D. These four atoms A, B, C, and D char-
acterize the positions of all atoms on the planar sheet in Figure 1b since all atoms
essentially result from the in-plane translation of these four atoms due to periodicity
in the atomic structure of the CNT. Therefore, the lengths and angles between these
four atoms completely characterize the planar structure in Figure 1b. Let a1 and a2

denote the vectors
−→
BC and

−→
DC in Figure 1c, respectively, and a1 and a2 be the

corresponding lengths. The length of BD is denoted by a3, and the lengths of AB

and AC are denoted by a4 and a5, respectively (Figure 1c). With these five lengths
ai (i = 1, 2, . . . , 5), all other lengths and angles in the “unrolled” plane can be
completely determined. In order to characterize the cylindrical structure of the CNT
shown in Figure 1a, it is necessary to prescribe the CNT diameter dt and helicity
together with these five lengths ai (i = 1, 2, . . . , 5). The CNT diameter dt and angle
θ (Figure 1) are related to the chirality (n,m) of the CNT. Following the standard
notation for CNTs, the chiral vector Ch, whose length equals the circumference of
the CNT, can always be expressed in terms of the base vectors a1 and a2 as (Fig-
ure 1c) Ch = na1 + ma2, where n and m are integers, n ≥ |m| ≥ 0, and the pair
(n,m) is called the chirality of the CNT; (n, 0) and (n, n) are called the zigzag and
armchair CNTs, respectively. It can be found that the CNT diameter dt and angle θ

as well as the spatial coordinates of atoms A, B, C, and D can all be given in terms
of these five lengths ai (i = 1, 2, . . . , 5). With these five lengths, the configuration
of single-wall CNTs prior to deformation can be completely characterized.

Once all bond lengths and angles are known (in terms of these five lengths
ai (i = 1, 2, . . . , 5)), the energy stored in a bond can be obtained from the in-
teratomic potential for carbon (1). The energy associated with the representative
atom A is 1/2(VAB + VAC + VAD), which also depends on these five lengths
ai (i = 1, 2, . . . , 5), where the factor 1/2 results from the equal partition of the
bond energy between the pair of atoms in each bond, VAB , VAC and VAD are the
energies stored in bonds AB, AC, and AD, respectively. These five lengths ai
(i = 1, 2, . . . , 5) are determined by minimizing the energy in the representative
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atom A, i.e.,

∂[VAB + VAC + VAD]/∂a1 = 0, i = 1, 2, . . . , 5.

3.2 Continuum Description for Deformed Single Wall Carbon Nanotubes

In this section, we determine atom positions on a CNT via an atomistic-based con-
tinuum theory (Zhang et al., 2002, 2004, Jiang et al., 2003). The deformation gradi-
ent F = ∂x/∂X characterizes the deformation of a material point in the continuum
analysis, where the material point represents atoms that undergo locally uniform
deformation, and X and x denote positions of the material point prior to and after
deformation, respectively. For a CNT subject to tension, the deformed CNT remains
to have a circular cross section such that the deformation gradient F is intrinsically
two-dimensional. Arroyo and Belytschko (2002) and Jiang et al. (2003) accounted
for the effect of CNT curvature in the continuum model based on the interatomic
potential.

Let r(0)ij denote the position vector from atom i to atom j prior to deformation.

For a material point subject to the deformation gradient F, the position vector r(0)ij

becomes rij = F · r(0)ij after deformation. Using the Cauchy–Born rule (Born and
Huang, 1954; Milstein, 1980) which equates the strain energy at continuum level to
energy stored in atomic bonds, we obtain the strain energy density W as a function
of deformation gradient F, i.e., W = W(F). Such an approach to obtain W from
the interatomic potential, however, is limited to materials with a centrosymmetric
atomic structure since the centrosymmetry together with rij = F · r(0)ij ensure the
equilibrium of atoms (Cousins, 1978; Weiner, 1983; Tadmor et al., 1999; Zhang et
al. 2002, 2004).

A CNT, however, does not posses centrosymmetry. As shown in Figure 2a, a
CNT prior to deformation is composed of two triangular sub-lattices (marked by
open and solid circles, respectively), and each sublattice possesses centrosymmetry.
Once the deformation is imposed, the Cauchy–Born rule discussed above can be
applied to each sub-lattice, but two sub-lattices may undergo a shift vector ζ , as
shown in Figure 2b. This shift vector ζ plays the role of relaxing atoms between two
sub-lattices in order to ensure equilibrium of atoms (Cousins, 1978; Weiner, 1983;
Tadmor et al., 1999; Zhang et al. 2002, 2004). The position vector between atoms i

and j from two different sub-lattices then becomes

rij = F · r(0)ij + ζ , (9)

and their distance is

rij = ‖rij ‖ =
√

ζ · ζ + 2ζ · F · r(0)ij + r(0)ij · FT · F · r(0)ij . (10)

The energy stored in atomic bonds obtained from the interatomic potential now de-
pends on both F and ζ . The Cauchy–Born rule then gives the strain energy density
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Fig. 2. (a) The decomposition of a hexagonal lattice to two triangular sub-lattices and (b) a shift
vector f between two sub-lattices is introduced to ensure the equilibrium of atoms. The solid
and dashed lines denote the lattice structures with and without the shift vector ζ , respectively.

W in the continuum analysis in terms of F and ζ via the interatomic potential, i.e.,
W = W(F, ζ ).

The shift vector ζ is determined by energy minimization, which is equivalent to
equilibrium of atoms (Zhang et al., 2002, 2004; Jiang et al., 2003), i.e.,

∂W

∂ζ
= 0. (11)

This is an implicit equation to determine the shift vector ζ in terms of F, i.e., ζ =
ζ (F). The strain energy density then becomes

W = W [F, ζ (F)]. (12)

3.3 Stress and Incremental Modulus

The second Piola–Kirchhoff stress T is the work conjugate of the Green strain E =
1/2(FT · F − I), i.e.,

T = dW

dE
= ∂W

∂E
+ ∂W

∂ζ
· ∂ζ

∂E
= ∂W

∂E
, (13)

where Equation (11) has been used. The incremental modulus tensor C is obtained
by taking the total derivative of the second Piola–Kirchhoff stress T with respect to
E as

C = dT
dE

= ∂2W

∂E∂E
− ∂2W

∂E∂ζ
·
(

∂2W

∂ζ∂ζ

)−1

· ∂2W

∂ζ∂E
. (14)
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3.4 Equilibrium Equations for Single Wall Carbon Nanotubes

The equilibrium equation for a single-wall CNT has been established by Zhang et al.
(2002, 2004), and is given by

1

R

∂

∂�
(F · T)R� − 1

R
(F · T)�� + ∂

∂Z
(F · T)RZ = 0,

1

R
(F · T)R� + 1

R

∂

∂�
(F · T)�� + ∂

∂Z
(F · T)�Z = 0,

1

R

∂

∂�
(F · T)Z� + ∂

∂Z
(F · T)ZZ = 0, (15)

where (R,�,Z) denotes the cylindrical coordinates in the undeformed configura-
tion.

3.5 A Single Wall Carbon Nanotube in Single Tension

The shear stress vanishes in a single wall CNT subject to simple tension along its
axial (Z) direction,

TZ� = T�Z = 0 (16)

Both the deformation gradient F and second Piola–Kirchhoff stress T are independ-
ent of � and Z such that the equilibrium equation (15a) gives

T�� = 0, (17)

while (15b) and (15c) are satisfied automatically. Equations (16) and (17) can be
written in terms of the strain energy density W as

∂W

∂EZ�

= ∂W

∂E�Z

= 0,
∂W

∂E��

= 0, (18)

which gives two implicit equations to determine E�� and EZ� (= E�Z) in terms of
axial strain EZZ. The axial force P on the CNT can be obtained by integrating the
normal stress traction ez · (F · T · ez) in the cross-section, which gives

P = 2πR
√

1 + 2EZZ TZZ. (19)

3.6 A Single Wall Carbon Nanotube in Pure Torsion

The non-vanishing components of the second Piola–Kirchhoff stress in pure torsion
are T��, TZZ, and T�Z (= TZ�), and they are independent of � for a CNT in pure
torsion. The equilibrium equation (15) projected along the base vector er , eθ and ez
in the cylindrical coordinates becomes

127



www.manaraa.com

H. Jiang et al.

Fθ�T�� + FθZT�Z + κR(Fθ�T�Z + FθZTZZ) = 0,

d

dZ
(Fθ�T�Z + FθZTZZ) = 0,

d

dZ
(FzZTZZ) = 0, (20)

where (R,�,Z) and (r, θ, z) denote the cylindrical coordinates prior to and after
torsion deformation, respectively; κ is the twist for a CNT in pure torsion. The de-
formation gradient for pure torsion is given by

F = r

R
eθe� + κreθeZ + (1 + ε)ezeZ

= r

R
(− sin κZeR + cos κZe�)e�

+ κr(− sin κZeR + cos κZe�)eZ + (1 + ε)ezeZ, (21)

where ε is the axial strain due to finite deformation. Combining with the bound-
ary condition in pure torsion, i.e., TZZ = 0 at the two ends, the substitution of the
deformation gradient in Equation (21) into (20) yields

T�� = −2κRT�Z, TZZ = 0. (22)

They are two implicit equations to determine the radius r and axial strain ε of the
deformed CNT in terms of the twist κ . The torque T on the CNT can be obtained by
integrating the shear stress traction eθ · (F · T · eZ) multiplied by the radius r of the
deformed CNT, which gives

T = 2πr2T�Z. (23)

4 Comparison between Brenner’s (1990) and Brenner et al.’s
(2002) Potentials

In this section, we compare Brenner’s (1990) interatomic potential and Brenner et
al.’s (2002) second-generation potential in several cases, including equilibrium bond
length, relation between energy and radius of CNT prior to deformation, Young’s
modulus, and material response to simple tension and pure torsion of single wall
carbon nanotubes.

4.1 Equilibrium Bond Length

For a pair of carbon atoms in a graphene in which the bond angle is 120◦, the equilib-
rium bond length r0 can be obtained by solving a one-variable equation dV/dr = 0,
where V is the interatomic potential of one carbon bond and is given in Equation (1).
The equilibrium bond length r0 is 0.145 nm for Brenner’s (1990) interatomic poten-
tial and 0.142 nm for Brenner et al.’s (2002) second-generation potential. The latter,
0.142 nm for graphene is accurate and consistent with the results reported in other
literatures, such as Desch (1934), Brown et al. (1997), and Harrison (1980).
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Fig. 3. The energy increase per atom in a carbon nanotube versus the nanotube radius R. A
graphene sheet is taken as the ground state.

4.2 Energy versus Radius Prior to Deformation

If we take a graphene as the ground (i.e., zero energy) state, the energy increase per
atom in a CNT is given by

1

2
[V (rAB) + V (rAC) + V (rAD)] − 3

2
V (r0),

where V is the interatomic potential in Equation (1), r0 is the equilibrium bond
length for graphene and obtained in Section 4.1. This energy increase per atom is
shown versus the CNT radius in Figure 3 for Brenner’s (1990) interatomic potential
and Brenner et al.’s (2002) second-generation potential. For comparison, Robertson
et al.’s (1992) molecular dynamics simulation results based on Brenner’s (1990) in-
teratomic potential is also shown. It is observed that the present analysis with Bren-
ner’s (1990) interatomic potential agrees very well with the atomistic studies, be-
cause they are based on same interatomic potential. It is also observed that both
Brenner’s (1990) and Brenner et al.’s (2002) potentials give that the energy scales
with 1/R2 because both stress and strain are proportional to the curvature 1/R at
small deformation. It is expected that the present analysis with Brenner et al.’s (2002)
second-generation potential will agree with molecular dynamics simulation with the
same interatomic potential.

4.3 Young’s Modulus of Single Wall Carbon Nanotubes

The linear elastic modulus of a single wall CNT along the axial direction Z can be
obtained from incremental modulus tensor C in Equation (14) for the infinitesimal
deformation, i.e., E = 0 and therefore ζ = 0.
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Fig. 4. The Young’s modulus of carbon nanotubes (CNTs), normalized by that of the graphene,
versus the nanotube diameter dt for (a) zigzag CNTs and (b) armchair CNTs.

Specifically, the “Young’s modulus” along the axial direction of the CNT is[
CZZZZ − C2

ZZ��

C����

]
E=0,ζ=0

.
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Fig. 5. The axial force P , normalized by the nanotube radius R prior to deformation, versus
the engineering strain ε for several zigzag and armchair carbon nanotubes in simple tension.

However, it is important to point out that this “Young’s modulus” is in fact the elastic
modulus multiplied by the tube thickness. In order to avoid the choice of CNT thick-
ness, we present the Young’s modulus of CNT, normalized by that of graphene,
versus the CNT diameter in Figures 4a and 4b for zigzag and armchair CNTs, re-
spectively. The tight-binding simulation results (Goze et al., 1999) are also shown. It

131



www.manaraa.com

H. Jiang et al.

Fig. 6. The torque T , normalized the square of nanotube radius R2 prior to deformation, versus
the normalized twist κR for several zigzag and armchair carbon nanotubes in pure torsion.

is observed that the different potentials give completely different trends of Young’s
modulus. For Brenner’s (1990) interatomic potential, the graphene is the toughest;
on the contrary, for Brenner et al.’s (2002) second-generation potential, the graphene
is the softest. Moreover, for Brenner’s (1990) interatomic potential, Young’s mod-
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ulus of zigzag CNTs has strong diameter dependence and that of armchair CNTs
does not. However, for Brenner et al.’s (2002) second-generation potential, Young’s
modulus of both zigzag and armchair CNTs has strong diameter dependence. It is
also observed that the present continuum analysis with Brenner’s (1990) interatomic
potential agrees well with the tight-binding simulations over a wide range of CNT
diameter. It implies that Brenner’s (1990) interatomic potential predicts more accur-
ate Young’s modulus of CNTs.

4.4 Simple Tension in Single Wall Carbon Nanotubes

Figures 5a and 5b show the axial force P in Equation (19), normalized by the CNT
radius R prior to deformation, versus the engineering strain ε for three zigzag CNTs
[(9, 0), (14, 0), and (∞, 0)] and three armchair CNTs [(5, 5), (8, 8), and (∞,∞)].
For Brenner’s (1990) interatomic potential, curves for armchair CNTs display little
dependence on the CNT radius R and that for zigzag CNTs display strong depend-
ence on CNT radius. However, for Brenner et al.’s (2002) second-generation poten-
tial, the curves for both zigzag and armchair CNTs display little dependence on the
CNT radius. It is also observed that, when the deformation is small, both zigzag and
armchair CNTs for Brenner et al.’s (2002) second-generation potential display stiffer
than those for Brenner’s (1990) interatomic potential, which is consistent with the
results of Young’s modulus shown in Figure 4.

4.5 Pure Torsion in Single Wall Carbon Nanotubes

Figures 6a and 6b show the torque T in Equation (23), normalized by the square
of CNT radius R2, versus the normalized twist κR for the same three zigzag and
four armchair CNTs as in Figure 5. For Brenner et al.’s (2002) second-generation
potential, both zigzag and armchair CNTs give larger torque T that for Brenner’s
(1990) interatomic potential, but enter the softening stage early than that for Bren-
ner’s (1990) interatomic potential.

5 Concluding Remarks

We have compared Brenner’s (1990) interatomic potential and Brenner et al.’s (2002)
second-generation potential on the radius effect of single wall carbon nanotubes. Our
analysis is based on the modified Cauchy–Born rule to incorporate the interatomic
potential into a continuum analysis. The modification of the Cauchy–Born rule en-
sures the equilibrium of atoms. It is observed that, Brenner et al.’s (2002) second-
generation potential gives more accurate equilibrium bond length. These potentials
also display rather different radius dependence of the Young’s modulus and simple
tension and pure torsion behavior of single wall carbon nanotubes.
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Abstract. We report the discovery of a novel pseudoelastic behavior in single-crystalline Cu
nanowires through atomistic simulations. Under tensile loading and unloading, the nanowires
are capable of recovering elongations up to 51%, well beyond the typical recoverable strains
of 5–8% for most bulk shape memory alloys (SMAs). This phenomenon is associated with
a reversible crystallographic lattice reorientation driven by the high surface-stress-induced
internal stresses due to high surface-to-volume ratios at the nanoscale. The temperature-
dependence of this behavior leads to a shape memory effect (SME). This behavior is well-
defined for wires between 1.76 and 3.39 nm in size over the temperature range of 100–900 K.

Key words: shape memory effect, pseudoelasticity, lattice reorientation, nanowires.

1 Introduction

Shape memory materials have important applications as couplings, sensors, and ac-
tuators because of their ability to recover certain configurations under proper ther-
momechanical conditions. They are sometimes referred to as “smart materials” be-
cause they can function simultaneously as sensors and actuators [1, 2]. The SME
and pseudoelasticity are considered unique to SMAs, liquid crystal elastomers, and
piezoelectric ceramics [2]. Recent research has shown that pseudoelasticity may also
be found in other materials at the nanoscale. For example, high resolution trans-
mission electron microscope (HRTEM) observations and atomistic simulations have
shown that gold nanowires exhibit reversible changes in electrical conductance,
structure, and mechanical properties during cyclic tension and compression [3, 4].
Also, carbon nanotubes are found to completely recover their original shapes after
severe deformations with strains up to 15% without inducing residual defects [5, 6].
Here, we report the discovery of a novel pseudoelastic behavior and SME in single-
crystalline face-centered-cubic (FCC) Cu nanowires based on results of atomistic
simulations. Under tensile loading and unloading, these wires are capable of recov-
ering elongations up to 51%, well beyond the typical recoverable strains of 5–8% for
most bulk shape memory alloys (SMAs). The critical temperature associated with
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the activation of the SME here is significantly size-dependent, making it possible to
design nanoscale components of varying sizes for operation over a wide range of
temperature. Such an objective is more difficult to achieve with conventional bulk
SMAs since their transition temperatures (martensite start and finish temperatures,
austenite start and finish temperatures) only vary with material structure and compos-
ition, not size. Moreover, the nanowires also have very short response times which
are on the order of nanoseconds due to their extremely small dimensions, making
them attractive functional components for biosensors, transducers, actuators, and in-
terconnects in nano-electromechanical systems (NEMS) [7].

2 Configuration

The analysis here focuses on Cu nanowires created experimentally through a “top-
down” fabrication approach [8]. These wires have a single-crystalline FCC structure
with a 〈110〉 axis and {111} transverse surfaces (hereafter denoted as the 〈110〉/{111}
wire or configuration). This configuration represents a low energy state for FCC
metallic nanowires and has been observed frequently in experiments and atomistic
simulations for Au, Cu, and Ag nanowires [8–13]. The specific nanowires analyzed
are created computationally in the spirit of the top-down fabrication process by “sli-
cing” square columns of atoms from single-crystalline bulk Cu along the [001],
[010], and [100] directions and by allowing them to undergo relaxation. Driven by
surface stresses, the nanocolumns spontaneously transform into the 〈110〉/{111} con-
figuration through a lattice reorientation process, exhibiting a contraction in the axial
direction and an expansion in the lateral directions. The resulting free-standing wires
have the same FCC structure as that of bulk Cu at the same temperature [14], with a
rhombic cross-sectional shape as shown in Figure 1a. In this paper, the side length of
the rhombic cross-sections (Figure 1a) is used to identify the wire size. All simula-
tions reported here are performed using the embedded-atom method (EAM) potential
for Cu [15].

To analyze the wires’ mechanical behavior, uniaxial tensile loading and unload-
ing are carried out under quasi-static conditions [16]. Specifically, in each load step,
all the atoms are first displaced according to a prescribed uniform strain increment
of 0.125% in the length direction. The wires are then relaxed with their ends fixed at
constant temperature for 9 picoseconds (ps) to obtain an equilibrium configuration
at the prescribed strain. This relaxation process allows structural changes to occur, if
the conditions so dictate. This process usually takes less than 6 ps and the averaged
stress over the last 3 ps of the relaxation period at each load step is taken as the stress
in the wire at the current strain. Unloading is implemented in the same manner, with
a negative strain increment of −0.125%.

3 Pseudoelasticity

Upon uniaxial loading and unloading, wires with lateral dimensions between 1.76 ×
1.76 and 3.39 × 3.39 nm exhibit a pseudoelastic behavior above a critical temperat-
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Fig. 1. Reversible lattice reorientations upon loading and unloading in single-crystalline Cu
nanowires; (a) original 〈110〉/{111} wire with rhombic cross-sections, α = 70.5◦ and β =
109.5◦, (b) stretched 〈001〉/{001} wire with square cross-sections.

Fig. 2. The stress-strain curve of a 1.76 × 1.76 nm Cu nanowire during loading and unloading
at 200 K.

Fig. 3. The progression of the structural transformation during loading.

ure Tcr (discussed later) with large recoverable strains of up to 51%. Below Tcr, the
deformation is not spontaneously recoverable and the wires retain their deformed
configurations after unloading.

Figure 2 shows the stress-strain curve of a 〈110〉/{111} wire with a lateral dimen-
sion of 1.76 × 1.76 nm during loading and unloading at 200 K, and Figure 3 shows
the deformation process of the wire. Clearly, the response is drastically different from
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Fig. 4. Lattice orientations on the cross-sections of the wire in Figure 3 at a strain of 0.24; (a) a
sectional view along the wire axis and the long diagonal of the cross-section, (b) elongated
hexagonal lattice on the cross-section in the unrotated domain with the 〈110〉/{111} config-
uration, (c) a cross-section in the transition region containing both the 〈001〉/{001} and the
〈110〉/{111} configurations, (d) square lattice on the cross-section in the rotated domain with
the 〈001〉/{001} configuration. Atoms are colored according to their centrosymmetry values.

that of bulk Cu. Specifically, the wire seems highly ductile with a fracture strain of
approximately 58%. The stress-strain curve consists of two linear deformation stages
(O→A and C→D) followed by two yield points (A and D, respectively), a stage of
slow strain hardening over a wide range of strain (B→C), and a stage of precipit-
ous stress drop (D→E). This behavior arises from a unique underlining deformation
process. Between O and A, the 〈110〉/{111} wire undergoes elastic stretching. Point
A corresponds to the beginning of a lattice reorientation process which leads to a
new configuration with a 〈001〉 axis and {001} side surfaces (hereafter denoted as
the 〈001〉/{001} wire or configuration), as shown in Figure 1b. Between C and D, the
newly formed 〈001〉/{001} wire undergoes elastic stretching. Further loading beyond
D causes the wire to yield through the formation and propagation of partial disloca-
tions which ultimately lead to necking and fracture of the nanowire at E [17], as
shown in Figure 3.

The unique lattice reorientation process (between point A and C in Figure 2) is
completed through the propagation of a twin boundary. Specifically, the twin bound-
ary is formed through the propagation of a 1

6 〈112〉 Shockley partial dislocation nuc-
leated from an edge at the lower end. This partial dislocation glides across the wire
on a {111} plane and leaves behind the twin boundary. Under the tensile loading,
the twin boundary sweeps through the wire length and progressively transforms the
wire into a new 〈001〉 orientation, as shown in Figure 4. Clearly, the twin boundary
divides the wire into two domains: one with the initial 〈110〉/{111} configuration and
the other with the 〈001〉/{001} configuration. A cross-section intersecting the twin
boundary clearly shows the lattice transition between the two domains (Figure 4c).
Upon the arrival of the boundary at the top end of the wire (corresponding to point
C in Figure 2), The whole wire is in the 〈001〉/{001} state without residual defects.
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Fig. 5. The reverse lattice reorientation during unloading at 200 K.

Fig. 6. A sectional view of the wire in Figure 5 showing the defects in the reverse lattice
reorientation during unloading (ε = 23.7%).

The lattice reorientation from 〈110〉/{111} to 〈001〉/{001} can be reversed upon
unloading, allowing the associated deformation to be fully recovered, as shown in
Figure 5. This reversibility gives rise to a pseudoelastic behavior of the wire. While
the propagation of a single twin boundary is responsible for the lattice reorienta-
tion during loading, multiple twin boundaries are formed and propagate during un-
loading. Sometimes, domains with local HCP stacking are formed when multiple
twin boundaries are nucleated next to each other, as shown in Figure 6. These twin
boundaries dissociate, propagate, and annihilate during unloading. At the end of the
unloading process, all twin boundaries disappear and the wire recover its original
〈110〉/{111} configuration without residual defects. The dash lines in Figure 2 rep-
resent the unloading paths from three different strains (0.05, 0.30, and 0.464, re-
spectively). Clearly, the deformations are fully recovered when the stress is reduced
to zero. The loading and unloading paths together form hysteresis loops typical of
shape memory materials [2].
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The aforementioned forward (loading) and reverse lattice reorientation (unload-
ing) processes are critical to the SME of the wires because they result in a 41.4%
recoverable strain (discussed later). Both processes have been confirmed by exper-
iments. Specifically, FCC nanowires are found to undergo the same forward reori-
entation during tensile deformation in HRTEM experiments [18]. The spontaneous
reverse reorientation process has also been observed in various experiments and com-
putations [8, 9, 14, 19–21]. The same result is also obtained in computations with
different atomistic potentials including an EAM, a modified embedded atom method
(MEAM), and a surface embedded atom potential (SEAM)) [9].

The large strain associated with the forward and reverse lattice reorientations
between A and C in Figure 2 can be quantified by a simple crystallographic ana-
lysis. Figures 7a and 7b compare the same (11̄0) plane in the original undeformed
〈110〉/{111} configuration and the deformed 〈001〉/{001} configuration. Clearly, the
forward and backward lattice reorientations manifest as 90◦ rotations in opposite dir-
ections of the unit cell in the plane. The length and width of the rectangular unit cell
in both cases are, respectively, a and (

√
2/2)a; where a is the lattice constant in the

stressed states and is assumed to be the same at A and C. The axial strain associated
with the lattice reorientation between A and C is given by

ε〈110〉↔〈001〉 =
(
a −

√
2

2
a

)/√
2

2
a = 0.414. (1)

This value of ε〈110〉↔〈001〉 is consistent with the value obtained in simulations, as
shown in Figure 2. This strain, along with the elastic strain εe〈110〉 associated with
the lattice stretching in the 〈110〉/{111} configuration between O and A (Figure 2)
and the elastic strain εe〈001〉 associated with the lattice stretching in the 〈001〉/{001}
configuration between C and D, constitutes the total pseudoelastic strain of

εr ≈ εe〈110〉 + e〈110〉→〈001〉 + εe〈001〉 = 0.05 + 0.414 + 0.05 = 0.514. (2)

This recoverable strain is essentially the same for all wires with lateral dimensions
between 1.76 × 1.76 and 3.39 × 3.39 nm and endows the nanowires with the ability
for pseudoelastic elongations of up to 51.4%, which is many times the typical 5–8%
recoverable strains for most bulk SMAs [1].

4 Shape Memory Effect

The pseudoelastic deformations of some shape memory alloys (SMAs) such as Au-
Cd, Au-Cu-Zn, Cu-Zn-Al, and Cu-Al-Ni [22–24] proceeds through the reversible
movement of twin boundaries. The behavior of these materials is commonly referred
to as rubber-like pseudoelasticity due to its resemblance to the behavior of soft rub-
ber [2]. This mechanism is driven by a general tendency for the equilibrium sym-
metry of the short-range order configuration of lattice imperfections to conform to
the symmetry of the lattice [24]. Hence, aging in the martensitic state and the ex-
istence of lattice imperfections are necessary conditions. Clearly, this mechanism is
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Fig. 7. Lattice rotation associated with the structural transformation during relaxation, (a) a
(11̄0) atomic plane containing the [110] wire axis and the long diagonal AA of the rhombic
cross-section in the original wire in Figure 1a, (b) the same (11̄0) atomic plane as in (a) after
lattice reorientation, containing the new wire axis ([001]) and diagonal BB of the new square
cross-section in Figure 1b.

Fig. 8. Comparison of the potential energy per atom of wires with the 〈110〉/{111} and
〈001〉/{001} configurations at 300 K.

very similar to that of pseudoelastic behavior of the Cu nanowires. However, neither
aging nor lattice imperfections are involved in the pseudoelastic behavior of the Cu
nanowires. Then what causes the 〈001〉/{001} wire to spontaneously revert back to its
original 〈110〉/{111} configuration upon unloading, since both states have the same
FCC crystalline structure and, perhaps, the same “stability”? The answer lies in the
surfaces and the extremely high surface-to-volume ratios of nanowires which can sig-
nificantly affect structural stability. Specifically, the surface energy is 1.280 Jm−2 for
{001} planes and 1.17 Jm−2 for {111} planes [15], causing the 〈110〉/{111} config-
uration to have a lower energy and to be more stable compared with the 〈001〉/{001}
configuration. A quantification of the difference in the potential energy as a function
of wire size between the two configurations is given in Figure 8. This energy differ-
ence primarily results from the energy density difference between {111} and {001}
surfaces. The average potential energy per atom decreases with increasing wire size
for each configuration because smaller wires have larger surface-to-volume ratios.
On the other hand, regardless of size, 〈110〉/{111} wires always have lower energy
levels compared with their deformed counterparts with the 〈001〉/{001} configura-
tion. Therefore, the 〈001〉/{001} wire has a natural tendency for spontaneous reori-
entation back to the 〈110〉/{111} configuration upon unloading. The reorientation
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Fig. 9. Variations of surface stress induced compressive stress σ and the critical temperature
Tcr with wire size.

essentially lowers the surface energy as a result of the increase in atomic density on
surfaces when {001} surfaces reorganize into closely-packed {111} surfaces.

The driving force for the spontaneous reorientation can also be viewed as coming
from the surface stress which induces a compressive stress in the interior of the wire.
This compressive stress is σ = 4f l/A, where f is the surface stress of the {001}
planes in the 〈001〉/{001} configuration, l is the side length of the square cross-
section (Figure 1b), and A (= l2) is the corresponding cross-sectional area [16, 20].
Obviously, the magnitude of σ increases as the wire size decreases and can be very
high at the nanoscale, as shown in Figure 9. For example, σ = −3.81 GPa for
a 〈001〉/{001} wire with l = 1.45 nm (l0 = 1.76 nm in the 〈110〉/{111} state),
sufficient for initiating the reverse reorientation at temperatures above 100 K, even
in the absence of externally applied forces. Note, however, that σ is only on the order
of Pascals in bulk materials and is negligible, providing an explanation as to why a
similar behavior is not seen in bulk Cu.

Like the behavior of normal bulk SMAs, the pseudoelastic behavior reported
here is strongly temperature-dependent. Specifically, the reverse lattice reorienta-
tion from 〈001〉 to 〈110〉 occurs only above a size-dependent critical temperature
Tcr (Figure 9). If unloading takes place at temperatures below Tcr, the reverse lat-
tice reorientation does not occur and the wire retains the 〈001〉/{001} configuration.
When subsequently heated above Tcr, the unloaded 〈001〉/{001} wire spontaneously
returns to its original 〈110〉/{111} configuration through the reverse lattice reorient-
ation. This is a novel SME driven by surface stress and the high surface-to-volume
ratios of the nanowire. It is a one-way SME that has the 〈110〉/{111} configuration
as the parent state, as shown in Figure 10.

If the 〈110〉/{111} state always has a lower energy than the corresponding
〈001〉/{001} state regardless of size, why does the reverse reorientation only occur
above Tcr? The answer has to do with the energetic barrier and driving force of the
process. To initiate the reorientation, partial dislocations nucleate and propagate to
accommodate mobile twin boundaries. These defects are of higher energies and thus
constitute an energy barrier for the reorientation. Thermal energy can provide the ne-
cessary energy for overcoming the barrier [25]. As wire size increases, σ decreases
and higher temperatures are needed to initiate the spontaneous reverse reorientation,
as shown in Figure 9. For example, Tcr is 100 K for a 1.76×1.76 nm wire and 900 K
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Fig. 10. An illustration of the shape memory effect in Cu nanowires.

for a 3.39 × 3.39 nm wire. For wires thicker than 3.39 × 3.39 nm, Tcr approaches
a significant fraction of the melting point. Under such conditions, the pseudoelastic
behavior and the SME are no longer obvious because the wire behavior becomes dis-
organized and dominated by random atomic vibrations. Because of this reason, the
well-defined rubber-like pseudoelasticity and SME only exist in Cu nanowires with
lateral dimensions below 3.39 nm.

In summary, the temperature dependence of the rubber-like pseudoelastic beha-
vior in single-crystalline Cu nanowires leads to an SME which is well-defined for
sizes between 1.76 and 3.39 nm over the temperature range of 100–900 K. Tensile
strains up to 51% can be recovered. The responsible mechanism is a reversible lat-
tice reorientation driven by the high surface-stress-induced internal stresses at the
nanometer scale, explaining why such a behavior is not observed in Cu at higher
scales. This unique behavior makes Cu nanowires attractive functional components
for biosensors, transducers, actuators, and interconnects in NEMS.
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Abstract. This article describes the methodology of hybrid atom/continuum (HAC) ap-
proach, and summarizes some of its applications, particularly on instability behaviors of car-
bon nanotubes.

Key words: instability, carbon nanotubes, hybrid atom/continuum approach, thin shell
model, elastic constants.

1 Introduction

It is known that the carbon-carbon (C-C) bond of graphite is the strongest interaction
between atoms in the nature [1, 2]. The atomic structure of a single-walled carbon
nanotube (SWNT) can be generated by rolling a graphite monolayer into a cylindrical
tubule structures, and then releasing it into an energy optimized, still tubule form [3,
4]. Thus, C-C bonds of SWNTs are found to be similar strong as those of graphite
[5]. In contrast, the interaction between constituent SWNTs in multi-walled carbon
nanotubes (MWNTs) or in SWNT-bundles is extra-weak, characterized by the van
der Waals force. The above extreme properties promise unusual applications of car-
bon nanotubes (CNTs), such as nanoscale sensors, bearing, gigahertz oscillators and
nano-electromechanical systems (NEMs). They also allow us to employ a hybrid
atom/continuum (HAC) approach to study various complex mechanical and elec-
tromechanical behaviors of these CNT-based devices and NEMS, as well as SWNT-
based structures and structural materials, that are beyond the ability scopes of the
current first principle calculations, tight-binding analyses, or even semi-empirical
potential-based atomics mechanics and molecular dynamics (MD) simulations.

In the HAC approach [6–8], individual SWNTs are modeled as elastic continu-
ous thin shells and the interaction between two SWNTs is simulated using a simple
pair-potential (e.g. the 6–12 Lennard–Jones potential) to represent the van der Waals
force. In this paper, we explain why and what kind of thin shell model is valid.
Using the HAC approach, we have proposed to create gigahertz oscillators based on
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MWNTs [7]; we have obtained the full set of elastic parameters of SWNT bundles as
bulk materials [8]; and we have also studied the phase transitions of SWNT bundles
[8], leading to results that are in excellent agreement with experimental observations.
These works are used as examples in the sequel for explaining the power of the HAC
approach.

2 Thin Shell Model of SWNTs

Using thin-shell model, Yakobson, Brabec and Bernholc (YBB) [9] have first demon-
strated remarkable success in capturing many complex deformation behavior of
SWNTs, such as the buckling strains under compression, torsion, and bend. By mod-
eling a SWNT as an isotropic linear elastic cylindrical thin shell rolled from a graph-
itic monolayer, they have calculated the pre-energies W0 of SWNTs and the excess
energies W1 of SWNTs under axial tensile strains ε. They further equate the bend-
ing rigidity Db = Y t3/12(1 − ν2) and the tensile rigidity Da = Y t of the modeled
shells, that are expressed in terms of the Young’s modulus Y , Poisson’s ratio ν and
shell thickness t , as the second-derivatives of W0 with respect to the tube curvatures
1/r and the second-derivatives of W1 with respect to ε, respectively, leading to the
unexpected super-thin effective thickness t = 0.066 nm and super-high Young’s
modulus Y = 5.5 TPa. The value ν = 0.19 is extracted from a reduction of the
diameter of one tube stretched in simulations. Since then, the YBB thin-shell model
has generated much debate centered at the wall thickness of the continuum models
for SWNTs. There have been some proposals to avoid introducing a thickness or set
the average interwall spacing of MWNTs as the thickness for SWNT (cf. [10, 11]).
Nevertheless, these proposals do not offer the same advantages and self-consistency
that the YBB thin-shell model has brought to us [12].

Our recent research [12] has showed that the thin shell model of SWNT could
be studied more subtly. For small tubes we have found that the isotropy of thin shell
model breaks down and all the model parameters, Young’s moduli and thickness for
instance, have remarkable size-dependence. Using ab initio calculations and atom-
istic models, we observe that the circumferential strain is one-order larger than the
axial strain of a SWNT in reference to their corresponding rolled-up structures. This
has therefore motivated us to validate the thin-shell model of SWNTs by considering
orthotropic symmetry, instead of isotropic symmetry, with the axial and circumferen-
tial directions being privileged. There are five possibly independent elastic constants
that relate the in-shell strains to the in-shell stresses. Further we have calculated all
the six parameters including the shell thickness, and the results show that SWNTs
have the square symmetry, higher than the orthotropy symmetry, and only SWNTs
with diameters larger than 1 nm could be modeled as isotropic thin shells with con-
stant thickness and elastic moduli (see Figure 1).
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Fig. 1. Diameter-dependence of all the thin-shell model parameters: (A) the axial and circum-
ferential Young’s moduli. (B) the shear modulus. (C) Poisson’s ratios. (D) the wall thickness.
(From [12])

3 Applications of HAC Approach

Using the HAC approach, Zheng and Jiang [7] have proposed to create nano-
scale mechanical oscillators of frequencies in the several gigahertz range based on
MWNTs. They calculate the restoring force induced by the excess van der Waals
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energy due to extrusion and the intershell sliding resistance force with assuming the
shells of MWNT as rigid ones. The frequencies of such oscillators predicted by this
model and the shear strength between two sliding tubes agree well with that of the
MD simulations [13–15].

Another application of the HAC approach is to determine the transverse mechan-
ical properties of SWNT bundles [8]. We have calculated the bulk elastic moduli of
SWNT bundles in reference to a stable configuration. Owing to their transverse iso-
tropy, the linear elastic properties of SWNT bundles can be completely characterized
by five independent elastic constants, i.e., the in-plane bulk modulus or compressibil-
ity, in-plane shear modulus, axial Young’s modulus, out-of-plane Poisson’s ratio and
out-of-plane shear modulus. For estimating the in-plane elastic properties, we calcu-
late the intratube and intertube energies using above-mentioned MD-based thin shell
model and a 6–12 Lennard–Jones potential in presenting the van der Waals interac-
tion, respectively. Although the van der Waals energy could be estimated by an in-
tegral of replacing the discrete distribution of atoms along the tube with a continuum
distribution with the same atom density, in calculating the out-of-plane shear modu-
lus c44 of SWNT bundles, purely atomic model is needed as illustrated in Figure 2.
This allows us to have for the first time predicted a complete set of all the five elastic
moduli. For typical SWNT bundles of tube diameter 1.4 nm, the predicted elastic
coefficients are c11 = 40.68 GPa, c12 = 39.32 GPa, c66 = (c11−c12)/2 = 0.68 GPa,
c13 = 12.40 GPa, c33 = 625.72 GPa, and (in average) c44 = 1.22 GPa. We have
also examined the elastic coefficients of all more than two hundreds hexagonal crys-
tals listed in the handbook by Every and McCurdy [16]. It is found that the elastic
properties of graphite have the highest anisotropy degree, 0.666, and the lowest mod-
ulus ratio, 0.39%, compared with those of all other hexagonal crystals. Interestingly,
we further find that the predicted elastic properties of SWNT bundles have higher
anisotropy degrees and lower modulus ratios than those of graphite. For instance,
for SWNT bundles of tube diameter 1.4 nm, the anisotropy degree is 0.836, and
the smallest modulus ratio is 0.11%. This reveals new type of extreme materials.
All excellent and extreme properties of SWNT bundles, including unique electronic
properties, give these new extremely high anisotropic materials more opportunities
to become new potential functional materials.

We have also noted that the deformability of tube cross-sections plays the dom-
inant role in characterizing the transverse moduli. Plano-parallel faceting surfaces
between adjacent tubes have a lower van der Waals interaction energy than that
between two adjacent perfectly circular tubes, a fact that favors polygonizing (see
Figure 3). The characteristics of the lattice instability have critical implications on the
elastic moduli, resulting from linearization of the elastic behavior of SWNT bundles
in reference to a chosen stable state. We have studied the instability characteristics of
the lattice of SWNT bundles by analyzing the balance between the intratube atomic
interactions and the intertube van der Waals interactions using the same approach de-
scribed above. We have thus obtained the pressure-strain relations for SWNT bundles
with tube diameters ranging from 1 to 2.1 nm shown in Figure 4. It shows that tube
cross-sections of a perfect lattice of SWNT bundles turn from perfectly circular to
hexagonal with rounded corners, as the tube diameter increases to 2.1 nm, which is
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Fig. 2. A schematic illustration for the model used to estimate the out-of-plane shear modulus.
(From [8])

Fig. 3. A schematic illustration of a hexagonal lattice and the triangle lattice unit of SWNT
bundles. (From [8])

larger than 1.7 nm as observed by Lopez et al. [17] in their HRTEM study and smal-
ler than 2.5 nm as predicted by Tersoff and Ruoff [18] using an atomistic approach.
We have noted that localized structural imperfections often promote instabilities, and
using an illustrative example we have showed that a slightly perturbed lattice would
result in the onset of cross section polygonization of tubes with a considerably smal-
ler diameter (1.8 nm, for this example). With surprise, we have also observed from
Figure 4 that the pressure-strain curves for tubes of different diameters nearly coin-
cide prior to their respective inflection points, and this new finding implies that the
in-plane bulk modulus at the origin is nearly independent of tube diameter.

The HAC approach could be also helpful in studying the electromechanical prop-
erties of CNT-based nano-devices. For instance, electronic transport properties of
the squashed armchair carbon nanotubes have been investigated, using tight-binding
molecular dynamics and the Green’s function method by Lu et al. [19]. They first
process structural optimization without analyzing the electron bands; then using the
optimized structure, they employ the TB Green’s function method to study the elec-
tronic transport properties of the squashed tubes. Instead of their performed tight-
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Fig. 4. The pressure-strain relations for SWNT bundles with diameters ranging from 1.0 nm
to 2.1 nm. (From [8])

binding calculations, this structural optimization process could alternatively be sim-
ulated using the HAC approach to remarkably reduce the computational cost. This is
important or even necessary when larger CNTs would be dealt with, such as invest-
igating the electrical properties of bent MWNT.

Finally we note that the HAC approach is not the same as the multiscale method.
The latter allows the use of a MD-like method in localized region, where quantit-
ies vary quickly on the atomic length scale, and a continuum description in its sur-
rounding material, where small scale variations are insignificant or can be treated
in an averaged sense. Two or three methods are seamlessly blended and each simu-
lation is performed on a different region, with a coupling imposed in “handshake”
regions where the different simulations overlap. An example of mutiscale approach
for MWNTs introduced by Qian et al. [20] show the applicability of this method on
CNT systems, in which a meshfree approximation is used for the coarse scale region
and meshfree discretization and MD coexist and coupled in the fine scale region.
However, the HAC approach does not partition the simulated object into different re-
gions where different methods are applied. It is different from the multiscale method
that the HAC approach only uncouples the interactions which affect each other little.
There are no handshake regions in HAC model that could avoid the exchanging in-
formation about internal force and boundary conditions.

4 Concluding Remarks

The tremendous difference in strength between the intra-wall C-C bond and the
inter-wall van der Waals interaction for carbon nanotubes allows to employ a HAC
approach to study various complex mechanical and electromechanical behavior
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of SWNT based structures and structural materials, such as MWNTs and SWNT
bundles, that are beyond the ability scopes of the current first principles calculations,
tight-binding analyses, or even semi-empirical potential-based atomics mechanics
and MD simulations. The characteristic of HAC approach is to model constituent
or elementary SWNTs as linear elastic thin shells and, synchronously, take into ac-
count of inter-wall interactions atomically. The elastic thin shell model has care-
fully been assessed, using MD and ab initio calculations. It has been found that
all the model parameters, Young’s moduli and thickness for instance, have remark-
able size-dependence, and the isotropy is also broken down for small tubes. Using
this approach, we have proposed to creat gigahertz oscillators. We have also stud-
ied the phase transitions of SWNT bundles, leading to results that are in excellent
agreement with experimental observations. We have obtained the full set of elastic
parameters of SWNT bundles as bulk materials. We have also shown that rippling
of MWNTs under bending is primarily an effect of multiwalls. MWNTs with two or
three shells could form a single or two kinks above a critical curvature when bent; the
rippling mode appears when the number of MWNTs shells is larger than four or five.
These concepts of the mechanisms of MWNTs ripping are helpful for understanding
many unusual experimental observations [21–24]. Further more, we have suggested
to study electromechanical properties of CNT-based devices using this approach and
pointed out that it is one different approach from the multiscale method.
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Abstract. Superlatice W(100)/NbN(100) with bilayer periods (� = 5.6 and 10.4 nm) was
non-isostructural superlattice material and fabricated by depositing alternating layers of single
crystal tungsten (W), a body-centered cubic metal, and niobium nitride (NbN), a face-centered
cubic ceramic, on a MgO single crystal substrate. The lattice constants of the ceramic and
metal layers are 0.439 nm and 0.315 nm respectively. The superlattice are nanocomposites
that exhibit a hardness at small bilayer repeat periods which exceeds the hardness predicted
by the rule of mixtures for normal composites by deep nanoindentation, while shallow nanoin-
dentations does not demonstrate the superhardening. The results indicate that the elastic mod-
ulus does not influence the hardness of the superlattice materials. The superhardening results
at deeper indentation depths is related to the nature of the interface between the layers in the
superlattice materials. Normally, superlattice gains hardness by losing deformability, however,
the superlattice demonstrated excellent deformability when reaching the superhardening.

Key words: nanolayers, nanoindentation, superhardening.

1 Introduction

Multilayered materials have been the focus of a significant amount of research.
Madan and Barnett [1, 2] have explored several different types of nitride based su-
perlattice thin films and have described the fabrication, the structure and the hard-
ness behavior of various thin films. Chu et al. [3] examined polycrystalline transition
metal nitride superlattice films and demonstrated that the hardness for several ma-
terials is inversely proportional to the bilayer repeat period and showed that there
is an optimum bilayer repeat period that maximizes the hardness for some materi-
als. They also discussed several possible explanations for the hardness behavior such
as the supermodulus effect, coherency strains, grain size reduction and Koehler’s
model. Clemens et al. [4] reviewed the hardness of several metallic and superlattice
materials and discussed the strain relaxation, interface morphology and Koehler’s
model. Anderson et al. [5] examined 50 vol% Cu-50 vol% Ni multilayered samples
and discussed the propagation of dislocation loops confined between the layers and
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the nucleation of dislocations at the interface. Thus, different classes of multilayered
materials have been examined, and several theories have been proposed to explain
the mechanisms that may operate to produce this increase in hardness in these ma-
terials: the supermodulus effect, coherency strains, the effect of interfacial misfit
dislocations on dislocation guide, the reduction of grain sizes as a result of thickness
of the alternating layers, and image forces (Koehler’s model) at the interface which
resist dislocation glide [3, 4]. However, while these articles describe the hardness in-
creases as layer thickness goes down and when layer thickness in the range of a few
nanometers, the hardness of the superlattice will research maximum. In this paper,
we present the superharening only occurs when indenter penetrates more interfaces.
Also we found the superlattice of NbN/W is much hard and deformable than NbN
ceramics.

2 Experimental Procedure

The nanocomposite chosen for this investigation was W/NbN which is classified as
an immiscible, non-isostructural superlattice material. To evaluate the influence of
the layer thickness on the results, two samples of this nanocomposite with different
bilayer repeat periods (� = 5.6 nm and � = 10.4 nm) were prepared for experi-
ments. The structure of this superlattice material has been well documented in the lit-
erature [1, 2]. The samples were fabricated by depositing alternating layers of single
crystal tungsten (W), a body-centered cubic metal, and niobium nitride (NbN), a
face-centered cubic ceramic, on a substrate. The lattice constants of the ceramic and
metal layers are 0.439 nm and 0.315 nm respectively. A pictorial representation de-
tailing the composition of each sample is shown in Figure 1. Note that the ceramic,
NbN, is the surface layer for both nanocomposite samples. Two additional samples
were prepared for each individual material comprising the nanocomposites for com-
parison. All four samples were epitaxially grown as a thin film approximately 1 µm
thick on an MgO (001) substrate using reactive DC magnetron sputtering.

The experiments were conducted using Hysitron’s Triboscope� Nanoindenter in
conjunction with Digital Instruments’ Nanoscope IIIa AFM imaging system. Each
sample was ultrasonically cleaned with acetone to remove any surface debris. Prior
to indentation, each sample was scanned to find suitable areas for indentation. After
indentation, the sample surface was scanned in situ to record the image of the surface
topography. Diamond cubic pyramidal indenter tips with an included angle of 90◦
were selected for the experiments since a sharp tip radius was necessary to achieve
sufficient penetration into the hard samples.

As noted in the literature, the surface roughness of the sample can significantly
influence the experimental results when conducting nanoindentation experiments [6,
7]. This is particularly important for shallow nanoindentations where the penetration
of the indenter into the material is less than 25 nm. To minimize this influence, the
sample surface was scanned prior to nanoindentation, the image was recorded, and
the actual surface roughness of the scanned area was determined to be less than
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Fig. 1. Structure of the nanocomposite samples used for experimentation. Sample W/NbN
(� = 5.6 and 10.4 nm).

Fig. 2. Load vs. displacement curves during shallow nanoindentation when nanoindentor pen-
etrates the 1st interface at h = 2.8 nm and the 2nd interface at h = 5.6 for sample W/NbN
(� = 5.6 nm). The nanolayer shows very similar behavior to NbN single crystal.

0.5 nm from the recorded image utilizing the Roughness Analysis feature of the
NanoScope IIIa software.

3 Experimental Results

A comparison of the load versus displacement curves for NbN and W at shallow
indentation depths and the nanocomposites, W (100)/NbN (100) (bilayer thickness
� = 5.6 nm), are shown in Figure 2. The comparison of the load versus displace-
ment curves indicate that the superlattice materials, W/NbN (� = 5.6 and 10.4 nm),
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Fig. 3. Hardness as a function of maximum indentation depth (shallow indentations).

exhibit loading and unloading patterns which are very similar to the behavior of
NbN. Both comparisons also demonstrate that tungsten initially follows the same
loading pattern but starts to deviate from the others at approximately 5 nm. Since the
bilayer repeat periods for W/NbN (� = 5.6 nm) and for W/NbN (� = 10.4 nm) are
so shallow, the indenter has penetrated only a couple of layers into the superlattice
materials.

Hardness is a general measure of the resistance of a material to plastic deforma-
tion. As noted earlier, the hardness is normally defined as the ratio of the maximum
applied load divided by the corresponding projected contact area. For nanoindenta-
tions, the hardness is normally defined as the maximum load divided by the projec-
ted area of the indenter in contact with the sample at the maximum load [8]. Thus,
H = Pmax/AC , where, H , Pmax and AC are the hardness, the maximum applied
load, and the projected contact area at the maximum applied load respectively. The
experiment was divided into two sets of nanoindentations. The first set of nanoindent-
ations, hereafter referred to as shallow nanoindentations, were conducted to evaluate
the influence (if any) of the individual layers on the hardness of the nanocomposites.
The second set of nanoindentations, hereafter referred to as deep indentations, was
conducted to examine the behavior of the materials as a function of the indentation
depth. For the shallow indentations, the applied loads were selected to achieve pen-
etration of the indenter to a depth equal to the theoretical thickness of the individual
layers of the nanocomposite materials. Since the focus was only on the first couple
of nanolayers, the shallow nanoindentations were designed to achieve a penetration
depth of less than 25 nm.

A comparison of the hardness as a function of the maximum indentation depth
for all the material samples for the shallow nanoindentations is shown in Figure 3.
A comparison of the results shows no significant difference in the hardness for the
two superlattice samples (W/NbN, � = 5.6 nm and W/NbN, � = 10.4 nm) and
the NbN sample for the shallow indentation depths (less than 25 nm). Also, the in-
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Fig. 4. Hardness as a function of maximum indentation depth (deep indentations).

dentation size effect causes the hardness of W to increase until it is approximately the
same as the hardness of NbN (at 5 nm). A comparison of the hardness as a function of
the maximum indentation depth is shown in Figure 4 for the deep nanoindentations.
An examination of this graph shows several trends. The results for the monolithic
material samples, NbN and W, indicate the presence of the Indentation Size Effect
(i.e. there is increase in hardness as the indentation depth decreases). The tungsten
hardness ranges from approximately 7 GPa at an indentation depth of 240 nm and
gradually increases to about 10 GPa at a depth of 40 nm. The niobium nitride hard-
ness ranges from 17 GPa at a penetration depth of 250 nm to about 23 GPa at a depth
of 40 nm. In contrast, the behavior of the nanocomposites differs from the behavior
for the monolithic materials. The hardness for both nanocomposites is consistent
over a range of indentation depths (50 nm to approximately 150 nm) before it begins
to taper off slightly. The final observation is that the hardness for each sample at
the deeper indentation depths approaches the microhardness reported [1]. An exam-
ination of the post-indentation surface topography shows significant pile-up of the
material near the indentation site.

4 Discussion

Combining the results of the previous two graphs (Figures 3 and 4), some deductions
can be made regarding the factors contributing to the observed hardness increase in
the superlattice materials under deep indentation. Both W and NbN exhibit hardness
around 20–23 GPa at an indentation depth of 5 nm. This is the approximate thickness
of an individual layer in one of the superlattice materials and both superlattice ma-
terials exhibit similar hardness at the same indentation depths. The influence of the
interfaces is minimal for the shallow indentations because only a few interfaces are
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in the load zone and the amount of deformation is small. However, at the deeper in-
dentation depths, the superhardeing occurs for the superlattice. The hardness is much
higher than the one predicted by the rule of mixtures for conventional composites
concept [1, 2]. Since the number of interfaces in the load zone increases at deeper
indentation depths, this indicates that the interface between layers is an important
factor in the remaining increase in hardness observed in the superlattice materials.
At shallow indentation depths, a few interfaces (about 1∼4) are penetrated and the
dislocation movement required to accommodate the plastic deformation is minimal.
However, as the penetration depth increases, the amount of dislocation activity in-
creases. At some point, the behavior of the interface as a barrier to dislocation motion
begins to affect the deformation characteristics of the nanocomposites leading to the
observed increase in hardness. Also there are no common slip systems between NbN
and W (bcc crystal). In B1 structure NbN, the primary slip system is {110}〈11̄0〉,
while the primary slip systems in W are {110}〈111〉, with additional slip systems
being {112}〈111〉 and {123}〈111〉. With the 45 degree rotation of the lattices, both
the slip planes and slip directions are different. It is extremely difficult for dislo-
cations propagate cross NbN/W interface. Moreover, since the lattice consts. Å for
W/NbN are 3.1650/4.39, with 1.36% mismatch, interfacial dislocation or interfacial
stress exist along the interface. All these above will make it harder for the indentor
to penetrate through the interface. Consequently, hardness will increase with more
interface participation.

In general, the elastic modulus should be constant regardless of the indentation
depth, although some minor variation is to be expected due to material imperfections.
The reduced elastic moduli for the deep and shallow indentations were calculated
using the area functions calibrated on a standard quartz sample and compared for
all the samples. The measured elastic modulus are between 270∼310 Gpa for both
deep and shallow indentations. Since the moduli for all the samples are in the same
approximate range, the influence of the elastic modulus on the hardness of the nano-
composites appears to be minimal. Consequently, it is not possible to attribute the
increase in hardness observed in the superlattice materials to this particular material
property.

Normally, nanolayers gains hardness by losing deformability [9], however, the
superlatice demonstrated excellent deformability when reaching the superhardening.
The NbN sample exhibits less material pile-up than the other materials. For a ceramic
material, the energy of indentation is absorbed by local cracking in the deformation
zone under the indenter tip. Hence, little material pile- up occurs during indentation.
However, in the nanocomposites, the NbN layers surround the W layers. Due to the
ductile properties of the W layers and the fact that the individual layers are only a
few nanometers thick, the NbN layers are forced to bend with the W layers since
the bending of the NbN layers is easier to achieve than fracture of the material. As a
result, the presence of the W layers act to alter the deformation process of the NbN
layers from fracture to bending.
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5 Conclusions

The shallow indentations show little difference in hardness between the NbN sample
and the two superlattice materials. However, an increase in hardness is observed at
deeper indentation depths. This indicates that the interface has a strong influence on
the increase in hardness.
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Abstract. For quasi-static deformations in engineering practice, molecular dynamics (MD)
simulation requires computation resources that are not affordable even with ever-increasing
computing power. In order to overcome this weakness, we developed a new method called
cluster statistical thermodynamics (CST). By taking the advantage of statistical thermody-
namics and adopting finite-element interpolation, the new approach can not only simulate
quasi-static deformation but have very high computing efficiency. The new method is based
on molecular potentials as MD does, but statistical thermodynamics help us greatly reduce the
tedious calculation of thermal fluctuations of molecules. Therefore, the new method appears
to be superior to MD in the simulations of quasi-static deformation. Especially CST works
much more efficiently than MD with much less storage space and CPU time. In this paper, we
illustrate the new methodology by means of some examples of two-dimensional quasi-static
tensile process at 300 K. It is found that the results obtained with CST are in good agree-
ment with those obtained by fully atomistic simulations and CST is 600 times faster than MD.
Hence, the new method seems to be a very efficient and promising approach to numerical sim-
ulations of solid deformations under quasi-static loadings and at finite temperatures, based on
molecular potentials.

Key words: cluster statistical thermodynamics, quasi-static deformation, finite temperature,
quasi-continuum method, molecular dynamics.

1 Introduction

Macroscopic theories of solid materials are based on statistical average of micro-
scopic interactions and then are insufficient to deal with a system at micro- and nano-
scales. In principle, mechanical behaviors of solid materials are determined by their
microscopic interactions between molecules and atoms constituting them. So far,
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molecular dynamics (MD) simulations, based on the full description of interaction
potential of all the molecules or atoms and the Newton equation, seem to be a ba-
sic numerical approach to model these behaviors. However, despite ever-increasing
computing power, we still encounter two formidable difficulties in these simulations,
namely the huge gap in the length and time scales involved [1]. It is well known
that even modern computers can, at most, deal with problems up to the spatial and
temporal range of micrometers and nanoseconds respectively. Obviously, this can
not meet the need to simulate most practical deformation processes, i.e. quasi-static
deformations of samples larger than several micrometers at finite temperature. Obvi-
ously these two obstacles present a great challenge to current simulations.

During the past decade, in order to solve the length scale problem, many re-
searchers have developed a variety of multiscale methods by imbuing continuum-
based models with more-realistic atomistic details. One of the pioneering works in
this field is the so-called FEAt method [2], in which the system is partitioned into
a “core” (inhomogeneous) described atomistically and the “remainder” (homogen-
eous) treated as a continuum. Recently, Abraham et al. [3] and Broughton et al.
[4] extended the method to include an additional core, handled by the quantum-
mechanical tight-binding (TB) approximation. Although this technique has, to some
extent, successfully solved the length scale problem, it can only treat dynamical pro-
cess up to 20 ps so far. Therefore, it is difficult to simulate practical quasi-static
processes.

Another important and remarkable approach is the quasi-continuum (QC)
method developed by Tadmor et al. [5]. The QC provides a framework whereby
degrees of freedom are judiciously eliminated and force/energy calculations are ex-
pedited, by means of overlaying the atomic lattice with a finite mesh (represented by
repatoms) and recognizing potential energy minimization. It is particularly useful if
one is primarily interested in metastable behavior of a defective material. Several re-
searchers have successfully used this method to simulate a variety of problems, such
as nanoindentation, crack tip deformation, dislocation interactions and so on. In spite
of these successes, at present, the primary disadvantage of the QC method is that it
is restricted to processes at absolute zero temperature (T = 0 K). Although Shenoy
and Phillips made an attempt to extend the QC method to finite temperature [6, 7], its
implementation is not efficient and simulations of large problems, other than simple
edge dislocations, require a much larger computational effort [7]. They performed
one-dimensional Monte Carlo simulations only and noted that the obtained results
raise more questions than they answer.

In this paper, we report a different and very efficient approach named cluster
statistical thermodynamics (CST), to calculate quasi-static deformation of a system
at finite temperature (T ) based on molecular potential. In the CST method, a system
consisting of atoms is partitioned into a number of clusters determined by their nodes
like finite element method. Each cluster is treated by statistical thermodynamics as
an equilibrium sub-system consisting of finite atoms or molecules. In particular, we
use statistical thermodynamics to greatly reduce the treatment of thermal fluctuations
of molecules, which are very time-consuming in MD simulations but not closely rel-
evant to quasi-static deformation. Based on the positions of the nodes, the Helmholtz
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Fig. 1. Schematic of cluster construction. The small gray circles are atoms of the system and
the big black circles, like α, β, and γ , are the nodes which construct the clusters.

free energy of each cluster is calculated and the total free energy of the system is ob-
tained by the summation of them. Then, the equilibrium configuration of the system
can be obtained by minimizing the total Helmholtz free energy of the system with
respect to the positions of nodes under the condition of constant volume or area (in
three or two dimensions respectively). We assess the validity of CST by comparing
a quasi-static uniaxial tension at room temperature with two fully atomistic models,
i.e. molecular dynamics (MD) and ‘molecular statistical thermodynamics” (MST),
the latter is the limit of CST with single molecule clusters.

2 Method Formulation

Now, we use a two-dimensional case to illustrate the principle and application of the
new method. Consider a system of N atoms, whose positions are denoted by {x}. As
shown in Figure 1, the system is partitioned into a number of clusters constructed by
their corresponding nodes (like α, β, γ , etc., see the large black circles in Figure 1).

Thus, the entire system can be characterized by all the nodes whose positions are
denoted by {X}. If we denote Nnode as the total of nodes, then, clearly, the freedom
degree of the system can be significantly reduced since Nnode � N . The require-
ment of the cluster construction is that the nodal system should behave as closely
as possible to the fully atomistic system. A criterion to this requirement is that the
statistical average of an observable F (denoted by F̄ ) calculated according to node
positions {X} be equal to the time-average of the observable in the corresponding
fully atomistic canonical system. Therefore, the aim of CST can be stated as

F̄ ({X})CST = F̄ ({x}) = 〈F({x})〉, (1)

where F̄ and 〈F 〉 are the time and ensemble average of F , respectively.
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When analyzing the mechanical response of a system under quasi-static loadings,
we are required to calculate the Helmholtz free energy of the system. The free energy
serves as a generating function for other mechanical quantities. Firstly, suppose that
the total Helmholtz free energy A of the whole system be the summation of the free
energy of each cluster, i.e.

A =
Nc∑
α=1

Aα, (2)

where Aα is the free energy of cluster α and Nc is the total of clusters.
Secondly, according to the local harmonic (LH) approximation [8], the Einstein

model of phonon density of states in statistical thermodynamics gives the Helmholtz
free energy of each cluster as

Aα = �α + NαkT

2∑
β=1

ln
�ωhβ

kT
= �α + 2NαkT ln

�|Dαh|1/4

kT
, (3)

where �α is the potential energy of cluster α, Nα is the number of atoms within
cluster α, � is Planck’s constant, k is Boltzmann’s constant, T is temperature (K),
ωhβ and Dαh are the vibrational frequency and the local dynamical matrix of the
atom h adjacent to the center of cluster α, respectively, and β, is either 2 or 3, in
accordance with dimensions.

Thirdly, we adopt local mean field approximation, i.e., assuming identical poten-
tial energy for atoms in each cluster. Then, the potential energy of cluster α can be
expressed as

�α = Nα�αh, (4)

where �αh is the potential energy of the atom h adjacent to the center of cluster α and
can be calculated in accord with deformed neighbors from the current interpolated
displacements in the cluster. At the same time, the determinant of the local dynamical
matrix of atom h can be calculated as [9]

|Dαh| = ∂2�α

∂x2
h1

∂2�α

∂x2
h2

−
(

∂2�α

∂xh1xh2

)2

, (5)

where xhη, η = 1 and 2, denote the positions of atom h in x and y directions respect-
ively.

Finally, using Equations (2–5), we can write the total Helmholtz free energy A

of the whole system as a function of all the node positions {X}, i.e.

A = A({(Xi, Yi), i = 1, . . . , Nnode}). (6)

We are now in a position to obtain the equilibrium configuration {Xeq} by minimizing
A with respect to the nodes positions {X}, when keeping the temperature T and
the total area of clusters, S = ∑Nc

α=1 Sα , fixed during the minimizing search. It is
important to notice that the CST method described above can be straightforwardly
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applied to the deformation at absolute zero temperature. In this case, the equilibrium
configuration can be easily obtained by minimizing the total potential energy of the
system, � =∑Nc

α=1 �α , with respect to the nodes positions {}.
Here, it should be pointed out that the CST method is different from the quasi-

continuum method developed by Tadmor et al. [5]. The essence of the QC method is
repatom (representing a number of atoms) statics/dynamics while the CST is based
on the statistical thermodynamical equilibrium of cluster nodes. Hence CST can be
readily used to deformations at finite temperature.

3 Some Examples

We validated the CST method by simulating two-dimensional quasi-static tensile
processes at 0 K and 300 K. In the present work, a single hexagonally packed lattice
of Cu with initial dimensions 68.3 × 16.9 nm was uniaxially tensioned. As shown in
Figure 1, the tensile direction is horizontal (x), and the free lateral boundary condi-
tions were adopted in the vertical (y) direction, for both CST and MD simulations.
The potential employed in our calculations is the Lennard–Jones potential,

e(r) = 4εp

[( r0

r

)12 −
( r0

r

)6
]

with parameters r0 = 2.3276 Å, εp = 0.4912 eV [9], and the truncated distance
rc = 7.8379 Å. The total number of nodes and clusters used in CST simulations are
189 and 336 respectively, corresponding to 20549 atoms in full MD simulations. For
CST, at each loading state, all the atoms reach their equilibrium positions by minim-
izing the total Helmholtz free energy of the whole system with respect to the node
positions using the conjugate gradient method [10]. For corresponding MD simula-
tions, it was conducted over a period of about 30ps with a time step of 2 fs using
the standard Verlet algorithm [11]. For MD simulations, the 30ps period contains
two parts: the first 20 ps are used to look for thermo-equilibrium and the remainder
for statistical calculation of time-average positions of atoms {xeq}. In order to facilit-
ate the comparison of CST and MD results, we adopt the same stress definition, i.e.
stress being the derivative of Helmholtz free energy. According to the LH approxim-
ation [8], the Helmholtz free energy of each loading state for MD is then computed
by the determinant method (DM) [12]

AMD = �({xeq}) + 2kT
N∑
i=1

ln

(
�|Di |1/4

kT

)
, (7)

where |Di | = [ωi1ωi2]2 is the determinant of the local dynamical matrix of atom i

and can be obtained by

|Di | =
(
∂2�

∂x2
i1

)
eq

(
∂2�

∂x2
i2

)
eq

−
(

∂2�

∂xi1∂xi2

)2

eq
.
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Fig. 2. (a) Stress vs strain curves at absolute zero temperature obtained by CST (+), MST (◦),
and MD (•) respectively. The stress σ is calculated by σ = (1/Ly0)(∂�/∂Lx), where Lx

and Ly0 are the deformed length in the X direction and the initial length in the Y direction

respectively. The unit of stress is k�/r2
0 , where � = 343 K is the Debye temperature for Cu.

(b) Stress vs strain curves at 300K. The stress σ is calculated by σ = (1/Ly0)(∂A/∂Lx).

Now, let us start with the comparison of the deformations at absolute zero tem-
perature simulated by CST, MST, and MD respectively. Three stress-strain curves
were calculated by differentiating the total potential energy of the system with re-
spect to the deformed length in the x direction, shown in Figure 2a. As one may
expect the agreement must be excellent, since the principles of CST, MST and MD
become identical at absolute zero temperature. More importantly, Figure 2b shows
the comparison of the three stress-strain curves at finite temperature (300K) obtained
by CST, MST, and MD respectively.

Figures 2a and 2b clearly demonstrate that, before breaking, the mechanical be-
havior predicted by the proposed CST method almost coincides with those obtained
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by two fully atomistic simulations (MST and MD) for both absolute zero temperature
and finite temperature. This indicates that the proposed CST method can accurately
simulate deformation at finite temperature. In particular, the deformation simulated
by CST is a quasi-static process, which corresponds to most practical tests in labor-
atories. The other advantage of CST simulations is that they are very efficient. For
example, for all simulations performed on a PC with CPU Pentium 4 2.6 GHz, the
calculations for each loading state took less than 10 s for CST and about 20 minutes
for MST but 100 minutes for MD, thus CST is 600 times faster than MD simulations.
Therefore, the new method seems to be a very efficient and promising approach to
numerical simulation of solid deformations under quasi-static loadings and at finite
temperature, based on molecular potentials.

4 Summary

In summary, we report in this paper a novel approach, i.e. cluster statistical thermo-
dynamics (CST) method, to simulate deformations of crystalline solids under quasi-
static loadings at finite temperature. The good agreements of uniaxial tensions ob-
tained by CST with fully atomistic simulations validate the new method. Moreover,
CST demonstrates much higher efficiency in computing time (about 3 orders less
than MD). Therefore, CST appears to be a more realistic (for quasi-static loading
at finite temperature) and more efficient method in simulations of solid deformation
based on molecular potential.
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Abstract. A computational homogenization strategy is developed to determine the number of
grains necessary to estimate the effective elastic properties of isotropic polycrystalline copper
with a given precision. Finite element simulations of polycrystalline aggregates are presen-
ted for both homogeneous and periodic boundary conditions. For different volumes, several
realizations are considered. The mean apparent shear modulus and the associated dispersion
are estimated as a function of the number of grains. Periodic conditions lead to rapid conver-
gence of the result towards the wanted effective shear modulus. The Representative Volume
Element (RVE) size is then related to the evolution of the standard deviation of the apparent
shear modulus, via an extension of the notion of integral range A3. For a precision of 1% and
10 realizations, a minimal RVE size of 445 grains is found. The found value A3 = 1.43 can
be compared to the integral range for other microstructures and physical properties.

Key words: representative volume element, homogenization, polycrystal, copper, finite ele-
ment, integral range.

1 Introduction

Computational homogenization methods are nowadays efficient tools to estimate ef-
fective properties of heterogeneous materials. They can take realistic distribution
of phases and sophiscated constitutive equations of the constituents into account
(Cailletaud et al., 2003). A key-point in such models is the determination of the
appropriate size of volume elements of heterogeneous materials to be computed in
order to get a precise enough estimation of effective properties. This is related to the
long-standing problem of the determination of the size of the Representative Volume
Element (RVE) in homogenization theory (Drugan, 1996). It is known that RVE is
morphology and property dependent but a well-suited parameter is necessary for
quantitative comparisons. Such a parameter was proposed by Kanit et al. (2003).

In the present work, a method is proposed to estimate the size of such a RVE
in isotropic linear elastic copper polycrystals. It has three main steps: the choice
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of a random model for polycrystalline microstructures containing a finite number
of grains, the resolution of boundary value problems on polycrystalline aggregates
of increasing sizes and the analysis of the convergence of the calculated apparent
properties towards an asymptotic value as a function of the number of grains and of
the boundary conditions. The asymptotic value is regarded as the effective property
(Sab, 1992). In other words, the objective is to find the minimum number of grains
required in a volume element to estimate the effective elastic property with a given
accuracy. The size of the RVE for several cubic elastic polycrystals was investigated
in 2D by Ren and Zheng (2002) and by Nygårds (2003) using three-dimensional FE
simulations and periodic boundary conditions. A relationship between the RVE size
and the anisotropy coefficient of each material was identified. Most interestingly, the
last author links the notion of representativity of considered material volumes with
the decay of the dispersion of calculated apparent properties for increasing grain
numbers, as done by Kanit et al. (2003). The present contribution focuses on the
dependence of the result on the choice of boundary conditions and on the determ-
ination of a statistical parameter quantifying the decrease in scatter with increasing
grain numbers and allowing comparisons of RVE sizes for other microstructures and
properties.

In the following, vectors are underlined and boldface quantities are second-rank
or fourth-rank tensors. The symbol := defines the quantity on the left of the symbol.

2 Computational Homogenization Method

2.1 Generation of Microstructures

Voronoi mosaics are used here as a random model to represent the polycrystalline
morphology, as explained in Barbe et al. (2001) and Kanit et al. (2003). For each
realization, one given cubic volume V that contains a given number Ng of Voronoi
cells is simulated. In the following, n realizations of volume V are considered. The
number of cells for each realization of the microstructure obeys a Poisson distribution
with given mean value N̄g = N . The mean volume of one Voronoi cell is equal to
1. No unit length is introduced because the models involved in this work cannot
account for absolute size effects. As a result, one has N = V . This convention is
used throughout the work.

A crystal orientation is attributed to each Voronoi cell which is then regarded as
an individual grain of the polycrystal. The crystallographic texture is assumed to be
random. It is possible to impose a geometrical periodicity constraint at the bound-
ary of the polycrystalline cube, as shown in Figure 1 (see also Kanit et al., 2003).
This condition is enforced in the subsequent FE simulations involving periodicity
conditions.

2.2 FE Meshing of Microstructures

The so-called multi-phase element technique is used in order to superimpose a reg-
ular 3D FE mesh on the Voronoi tessellation point of each element of the mesh.

172



www.manaraa.com

On the Size of the RVE for Isotropic Elastic Polycrystalline Copper

Fig. 1. Regular FE mesh superimposed on a Voronoi mosaic containing 50 grains, using the
multiphase element technique.

The crystal orientation of the closest voxel is attributed to every integration point of
each element of the mesh. The elements are 20-node quadratic bricks with 27 Gauss
points. Figure 1 shows such a mesh made of 16 × 16 × 16 elements. The main draw-
back of the technique is that one element may contain integration points that belong
to several grains. The bias introduced by this meshing technique was investigated in
Schmauder (1997), Barbe et al. (2001) and Kanit el al. (2003).

The effect of mesh density, i.e. of the number of elements per grain, was investig-
ated here for elastic polycrystalline copper. FE meshes of a given aggregate made of
50 grains were considered. The convergence of the computed apparent shear modulus
µapp was analyzed when the number of mesh elements increases. For each simula-
tion, the geometry of the microstructure is unchanged but the number of degrees of
freedom is increased from 5568 to 56355. From these results, a resolution of 16 ele-
ments per grain was chosen for the following calculations. The use of finer meshes
does not improve the result of more than 1%.

The largest volume computed in this work is a cube with 423 = 74088 elements,
i.e. 937443 degrees of freedom. Such computations are made possible in a reasonable
time by using parallel computing. The FE program used in this work implements the
subdomain decomposition method FETI (Zset, 1996; Feyel, 1999). The mesh is split
into 32 subdomains and the tasks are distributed on a platform of 32 processors
(768 MB RAM, 800 MHz). Compatibility and equilibrium at interfaces between
subdomains are restored by an iterative procedure. The whole resolution requires
21GB of memory.

2.3 Boundary Conditions and Definition of Apparent Moduli

Three types of boundary conditions to be prescribed on an individual volume element
V are considered (Zaoui, 1987):
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– Kinematic uniform boundary conditions (KUBC): The displacement vector u is
imposed at all points x belonging to the boundary ∂V according to:

u = E · x ∀x ∈ ∂V 〈ε〉 := 1

V

∫
V

εdV = E, (1)

where E is a given constant symmetrical second-rank tensor. The macroscopic
stress tensor � is then defined as the spatial average of the local stress tensor σ .

– Static uniform boundary conditions (SUBC): The traction vector is prescribed at
the boundary ∂V according to:

σ · n = � · n ∀x ∈ ∂V 〈σ 〉 := 1

V

∫
V

σdV = �, (2)

where � is a given constant symmetrical second-rank tensor. The outer normal
to ∂V at x is denoted by n. The macroscopic strain tensor E is then defined as
the spatial average of the local strain ε.

– Periodicity conditions (PERIODIC): The displacement field over the entire
volume V takes the form

u = E · x + v ∀x ∈ ∂V, (3)

where the fluctuation v is periodic. v (resp. σ · n) takes the same value (resp.
opposite value) at two homologous points on opposite sides of V .

The local behaviour at every integration point inside each grain in the simulation
is described by the fourth-rank linear elasticity tensor c:

σ (x) = c(x) : ε(x). (4)

No specific behavior is attributed to grain boundaries (Cailetaud et al., 2003).
The partial differential equations to be solved using the FE method are the classical
stress balance equations without body forces. For a given volume V , and owing
to the linearity of the considered boundary value problems, fourth-rank tensors of
apparent moduli Capp

E and apparent compliance S
app
� can be defined by the following

macroscopic relations:

� = 〈σ 〉 = 1

V

∫
V

σdV = Capp
E : E, E = 〈ε〉 = 1

V

∫
V

εdV = Sapp
� : �. (5)

The first relation is used for KUBC and PERIODIC problems, the second one for
SUBC problems. Note that in general, the tensor Sapp

� cannot be expected to coincide
with the inverse of C

app
E . However, for sufficiently large volumes V , the apparent

moduli do not depend on the type of boundary conditions any longer and coincide
with the effective properties of the medium (Sab, 1992):

Sapp−1
� = Seff−1 = Ceff = Capp

E . (6)

For intermediate volumes V , the following inequalities, written in the sense of quad-
ratic forms, hold (Huet, 1990):
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Sapp−1
� ≤ Ceff ≤ Capp

E . (7)

In the next section, both C
app
E and the periodic estimations are checked to remain

between the bounds defined by (7).
The following two shear loading conditions Eµ and �µ are used in this work:

Eµ =
⎡
⎣ 0 1

2 0
1
2 0 0
0 0 0

⎤
⎦ , �µ =

⎡
⎣ 0 α 0

α 0 0
0 0 0

⎤
⎦ with a = 1 MPa (8)

in the particular Cartesian coordinate frame attached to the cubic volume element. In
the case of KUBC and PERIODIC conditions prescribed to a given volume V , one
defines the apparent modulus µ

app
E by the work of internal forces in the volume V

subjected to the loading Eµ:

µ
app
E (V ) := 〈σ : ε〉 = 〈σ 〉 : Eµ = 1

V

∫
V

σ12dV. (9)

In the case of SUBC boundary conditions, an apparent shear modulus µ
app
� is

defined as the work of internal forces generated in V by the application of the loading
�µ:

a2

µ
app
E

(V ) := 〈σ : ε〉 = �µ : 〈ε〉 = 2a

V

∫
V

ε12dV. (10)

These definitions remain formal insofar as the apparent elasticity properties of a
given material volume element V are not necessarily isotropic.

3 Determination of Apparent Shear Moduli for Polycrystalline
Copper

We now consider the special case of linear elastic copper polycrystals with a uniform
distribution of crystal orientations. The cubic elasticity constants of pure copper are
taken from Gairola (1981):

C11 = 168400 MPa, C12 = 121400 MPa, C44 = 75390 MPa.

The corresponding value of the anisotropy coefficient α = 2C44/(C11 − C12) is 3.2.
Due to the uniform distribution of crystal orientations, the effective medium ex-

hibits an isotropic linear elastic behaviour, described by effective bulk and shear
moduli keff and µeff. For cubic symmetry, the apparent bulk modulus is not a random
variable (Gairola, 1981). It is uniquely determined from the single crystal elasticity
constants according to the formula kapp = keff = (C11 + 2C12)/3 = 137067 MPa.
As a result, the homogenization problem reduces to the estimation of apparent shear
properties µapp and in fine of the effective shear modulus µeff.
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Table 1. Mean apparent shear modulus, associated dispersion and relative error on the mean
as a function of the domain size and of the number of realizations for three different boundary
conditions.

V n µ̄app (MPa) Dµ(V ) (MPa) εrel
KUBC 25 100 52543 3186 1.2%
KUBC 400 50 50088 836 0.4%
KUBC 1000 25 49787 533 0.4%
KUBC 5000 10 49336 222 0.2%
PERIODIC 25 100 49669 3162 1.2%
PERIODIC 123 50 48886 1400 0.8%
PERIODIC 400 50 48784 811 0.4%
PERIODIC 500 50 48764 778 0.4%
SUBC 25 100 43397 3185 1.4%
SUBC 400 50 47308 823 0.4%
SUBC 1000 25 47566 538 0.4%
SUBC 5000 10 48390 178 0.2%

It is shown in Kanit et al. (2003) that the fourth-rank tensor of apparent moduli
C

app
E (V ) obtained for a finite domain V containing Ng grains is generally not iso-

tropic. However, its ensemble average C̄
app
E (V ), i.e. its mean value over a sufficiently

large number of realizations, turns out to be isotropic. This has been checked here
for polycrystalline copper aggregates. The shear modulus associated with the iso-
tropic elasticity tensor C̄app

E (V ) coincides with µ̄
app
E (V ), the ensemble average of the

apparent shear moduli µapp
E (V ) defined by Equation (9) and computed for a domain

V of given size (or equivalently containing N = V grains in average). Accord-
ingly, the estimation of µ̄app

E (V ) only requires the determination of µapp
E (V ) for each

realization. This is the computation strategy adopted in this work. Similarly, using
SUBC conditions, it is sufficient to compute µ

app
� (V ) for each realization according

to Equation (10).
The apparent shear moduli and compliances µapp(V ) were computed using

volume elements V of increasing size, ranging from V = 25 to V = 5000 grains,
with n(V ) realizations for every volume. Number n is chosen such that the estimation
of the mean µ̄app(V ) is obtained with a precision better than 1%. This precision is es-
timated according to the simple sampling rule (13) involving the standard deviation
Dµ(V ). All simulation results are shown in Table 1.

Mean values and confidence intervals for the apparent shear modulus [µ̄app(V )−
2Dµ(V ), µ̄app(V ) + 2Dµ(V )], are plotted in Figure 2, as a function of volume size
V . The mean apparent shear moduli strongly depend on the domain size and on the
boundary conditions. However, the values converge towards an asymptotic constant
as the volume size increase, as expected (Sab, 1992). A striking feature of these
results is the very fast convergence of the periodic solution and, in contrast, the very
slow convergence associated with homogeneous boundary conditions. The periodic
estimate is bounded by the KUBC and SUBC estimates:

µReuss ≤ µ̄
app
� ≤ µ̄

app
periodic ≤ µ̄

app
E ≤ µVoigt, (11)

176



www.manaraa.com

On the Size of the RVE for Isotropic Elastic Polycrystalline Copper

Fig. 2. Mean values and confidence intervals for the shear modulus µapp as a function of
domain size, for three different boundary conditions.

where µReuss and µVoigt denote the first order lower and upper bounds for the ef-
fective shear modulus of the polycrystal (Zaoui, 1987). For decreasing values of
V , the apparent moduli µReuss

E (V )(µReuss
� (V )) get closer to the upper (lower) limit

µVoigt(µReuss).

4 Determination of the Size of the RVE

The notion of RVE is necessarily related to the choice of a statistical precision in the
estimation of the investigated effective property. First, we set a tolerance error α on
the bias and find a corresponding volume V0 such that:

|µ̄app(V0) − µeff| ≤ α. (12)

This condition sets a lower bound for the size of the RVE. Then, the relative precision
of the estimation of the mean µ̄app(V ) of apparent shear moduli for a given volume
V ≥ V0 and a number of realizations n, can be defined according to the sampling
theory by:

εrel = 2Dµ(V )

µ̄app(V )
√
n
. (13)

In turn, the number of realizations required to correctly estimate µ̄app(V ) is de-
duced from Equation (13) provided that the variance D2

µ(V ) is known.
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According to homogenization conditions (8), (9) and (10), the apparent shear
modulus is obtained by averaging an additive scalar over the volume V . As a result,
it is shown by Matheron (1997) that, for asymptotically large volumes, the variance
D2

µ(V ) of µapp(V ) is given by:

D2
µ(V ) = D2

µ

A3

V
, (14)

where A3 is the integral range, a well-established quantity for additive geometrical
properties such as volume fraction. D2

µ is the point variance of C1212(x), which de-
pends on crystal orientation at x. For uniform orientation distribution, it can be ex-
pressed in terms of the single crystal cubic elasticity constants as follows:

D2
µ = 〈(c : c)1212〉 − 〈c1212〉2 with 〈c1212〉 = 1

5
(C11 − C12 + 3C44), (15)

〈(c : c)1212〉 = 1

35
(−6C44C12−4C12C11+2C2

12+2C2
11+6C11C44+15C2

44), (16)

where 〈·〉 refers to averaging over uniformly distributed orientations. For pure copper,
one gets Dµ = 13588 MPa. We choose to identify the integral range A3 from the
results obtained with periodicity conditions because they introduce the smallest bias
in the estimated effective shear modulus. We find A3 = 1.43, to be compared with
the mean grain size set to 1, and the integral range for the volume fraction of a given
orientation A3 = 1.17 given by Kanit et al. (2003).

Equations (12), (13) and (14) can now be used quantitatively to determine a min-
imal size of RVE for a given precision εrel and a number of realizations n:

V = 4

n
D2

µ

A3

ε2
relµ

eff 2
. (17)

In the case of periodicity boundary conditions, the choice (εrel, n) = (1%, 10) gives
a minimal volume corresponding to V = 445. For n = 100 successive computations,
this volume reduces to 45.

5 Conclusions

A computational homogenization methodology was applied to the determination of
RVE sizes for the isotropic linear elastic behaviour of copper polycrystals. For a
given precision of 1% in the estimation of the effective property, and a number of af-
fordable computations ranging from 10 to 100, RVE sizes remain of the order of 40
to 400 grains, provided that periodicity boundary conditions are applied to the poly-
crystalline aggregates. The convergence of apparent properties obtained using homo-
geneous boundary conditions towards the effective modulus is significantly slower
than for periodicity conditions. The asymptotic shear modulus can be accurately es-
timated by a small number of huge computations or by a large number of small-scale
computations, looking at the ensemble average of the apparent properties.
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The integral range A3 defined and identified in this work is a well-suited para-
meter to compare RVE sizes for different properties and morphologies. It charac-
terizes the rate of decrease in the dispersion of apparent properties for increasing
volume sizes, according to Equation (14). It depends on the investigated property
(volume fraction, elasticity moduli, thermal conductivity, etc.). The value calculated
in this work can be compared to the integral range found for a two-phase elastic
material with a contrast in Young’s moduli of 100 and 50% volume fraction of hard
phase, namely A3 = 1.64 (Kanit et al., 2003). The relatively high value found in
the present work in spite of the relatively small contrast in properties between differ-
ent orientations can be attributed to the multi-phase character of polycrystals, each
crystal orientation being regarded as an individual phase. The volume must be large
enough to contain enough individual orientations.
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Abstract. The variational boundary integral formulation of the Peierls–Nabarro dislocation
model has recently become one of the most effective multiscale approaches for the analysis of
dislocation nucleation problems. By representing the structure of a dislocation as the relative
displacement between two adjacent atomic layers along the slip plane, the model allows for
the convenient incorporation of atomic information to treat the deformation of the disloca-
tion core as continuous deformation, therefore eliminating the uncertain core cutoff parameter
associated with the singularity of continuum elastic dislocation theory. By reducing many
atomic degrees of freedom to fewer, yet more physically intuitive, degrees of freedom in this
multiscale approach, one may gain a greater understanding of relevant physical processes in
larger systems with more realistic geometries. Application of this approach requires the un-
derstanding of the reliability of this approach, or at least, it correlation to that of all atom
calculations. Using nucleation of a 〈111〉 screw dislocation at a step from a {112} surface of
tantalum as an example, this paper provides an atomistic corroborative study of this multiscale
approach. The results show the critical stresses for dislocation nucleation in this configuration
obtained by the multiscale approach are in good agreement with all atom calculations.

Key words: dislocation nucleation, surface step, atomistic simulation, multiscale modeling.

1 Introduction

The recent increasing interest in energetics of dislocation nucleation in various con-
figurations such as cracks (Schoeck and Pueschl, 1991; Rice, 1992; Xu et al., 1995;
1997; Zhu et al., 2004), voids (Rudd, 2002), interfaces (Spearot et al., 2005), sur-
face steps (Godet et al., 2004) has been largely driven by the desire to understand
the physics of mechanical behavior of crystalline materials, particularly those nano-
structured polycrystalline materials, as well as to grow the high quality of thin layer
semiconductor structures for advanced electronic and optoelectronic applications.
Here we shall point out that dislocation nucleation means the creation of dislocations
from perfect lattice structures but not dislocation generation or multiplication from
existing dislocations. The fundamental physical processes for these two phenomena
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are quite different. The local stress required to nucleate a dislocation is comparable
to the theoretical stress, while the local stress required to generate or multiply dislo-
cations from existing dislocations is generally comparable to the yield stress of the
crystal, which is typically several orders lower than the theoretical stress. In general,
dislocation nucleation is a complex atomic scale process that involves the forma-
tion of a curved dislocation in a configuration of the length scale of few nanometers,
somewhat one order larger than the size of dislocation core structure. Hence, it is
well recognized that the energetics of such a process cannot be reliably obtained
based on continuum elastic dislocation theory because it ignores atomic information
by using an uncertain cutoff parameter associated with the dislocation core region.
On the other hand, direct atomistic simulation is also limited to the problems of re-
latively small size because of the difficulties to enforce the boundary conditions as
well as to determine the unstable saddle point configurations of curved dislocations
in large atomic systems.

Alternatively, the multiscale approach based on the variational boundary integral
formulation of the Peierls–Nabarro dislocation model has proven to be an effect-
ive approach to study dislocation nucleation problems in complicated configurations
(Xu et al., 1997; Xu and Argon, 2000; Xu, 2002; Xu and Zhang, 2002; Zhang and
Xu, 2004). By representing the structure of a dislocation as the relative displacement
between two adjacent atomic layers along the slip plane, this model treats the de-
formation of the dislocation core in a continuous fashion, therefore eliminating the
uncertain core cutoff parameter associated with continuum elastic dislocation the-
ory. In addition, appropriate atomic potentials based on ab initio calculations can
also be conveniently incorporated along the adjacent atomic layers so that the ef-
fects of atomic properties on dislocation nucleation can be ascertained. Furthermore,
the variational boundary integral method (Xu and Ortiz, 1993; Xu, 2000) can be
effectively utilized to solve the structure of unstable saddle point configurations of
embryonic dislocations in general three dimensional configurations by controlling
slip based on Lagrange multiplier method (Xu et al., 1995).

It should be noted that the Peierls–Nabarro dislocation model is a continuum
based multiscale model with minimum commitment to the atomistic information.
Although this method appears to be far superior to continuum elastic dislocation the-
ory, the reliability of this method for the analysis of dislocation nucleation processes
is still not well understood. The ultimate solution of this problem based on ab initio
approach such as density functional theory with local approximation is out of the
question in the foreseeable future. It appears, however, there is still a need to under-
stand how this model compares to all atom methods based on empirical potentials.
Since the variational boundary integral method provides superior control over the
system of study, such corroboration establishes the confidence to use this multiscale
approach to explore dislocation nucleation in realistic structures of technological
importance. Moreover, the saddle point configurations of the curved dislocation ob-
tained by this method may also be used as the initial configurations for further direct
atomic refinement using the nudged elastic band method (Zhu et al., 2003) if such
refinement is deemed necessary for certain applications.
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Fig. 1. Configuration of a surface step of tantalum. The slip direction is assumed to be par-
allel to the intersection of the step surface and the crystal surface. The remote shear stress is
assumed to be parallel the slip direction.

In this paper, we summarize our recent comparative study of dislocation nucle-
ation at a surface step using both the multiscale method and direct atomic calcula-
tions. The focus is to understand how these two methods correlate with each other.
To make the comparison as exact as possible, we start with the same atomic poten-
tial of tantalum which is modeled based on a host of ab initio simulation. Tantalum
has a number of interesting properties which make it a good system to study. It is
part of the bcc family of metals whose low temperature plasticity is controlled by
long, straight, low mobile 〈111〉 screw dislocations and has many active slip planes.
These interesting features have inspired numerous atomic level investigations of the
motion of such screw dislocations under stress using empirical potential and ab ini-
tio methods [7]. In our study, all elastic constants used in the multiscale method are
calculated directly from this potential. The interatomic layer potential between the
adjacent atomic layer along the possible slip planes, namely (110) and (211), are
modeled based on the atomic calculation of the generalized stacking fault energy,
or the so-called γ surface. The critical stress for dislocation nucleation at a step of
tantalum surface obtained with both methods will be compared.

2 Configuration for Dislocation Nucleation from a Surface Step
in Tantalum

Figure 1 shows the configuration of a surface step at a tantalum surface. The symbol
denotes the height of the step. Dislocation nucleation is driven by the simple remote
shear stress which is parallel to the surface of the step. Nucleation of a screw disloca-
tion should occur on the most energetically favorable slip plane such as the slip plane
(−110) or (−121). Such configuration is selected also for its simplicity because of
no involvement of the effect of normal stress across the slip plane and the surface
production or elimination from the step.

As the shear stress increases from zero, the stress concentration on the slip plane
near the step induces a stable slip until the shear stress reaches a critical value which
is governed by the periodic shear resistance between the adjacent interatomic lay-
ers. Under the stress level below this critical value, a curved embryonic dislocation
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may also form as a consequence of a localized outward protrusion of slip into an
unstable saddle point configuration from the stable slip configuration through the as-
sistance of thermal motion. Thus, there are two solutions associated with the same
level of stress below this critical value, one is stable and the other is unstable. The
energy difference between these two configurations is the activation energy Eact re-
quired for thermally assisted dislocation nucleation. Note that this activation energy
is stress-dependent and approaches zero as the stress approaches the critical stress
for athermal dislocation nucleation.

3 Variational Boundary Integral Formulation of the
Peierls–Nabarro Dislocation Model

In the variational boundary integral formulation of the Peierls–Nabarro dislocation
model, the structure of a dislocation along the slip plane, corresponding to the relat-
ive displacement between two atomic layers, is modeled as continuous distribution
of infinitesimal dislocations. Between the adjacent atomic layers is assumed an in-
teratomic layer potential along the slip plane, while the surrounding crystal is treated
as a linear elastic solid. The structure of the dislocation can then be determined by
the variational boundary integral method (Xu et al., 1997). To account for the sur-
face effect, a straightforward approach is adopted to allow the use of this method for
general half space problems. In this approach, the surface with the step is modeled
as part of a very large crack surface embedded in the infinite elastic solid. As the size
of this crack is selected to be much larger than any relevant size of the dislocation
and step configuration, the problem can then be solved in an equivalent system that
is essentially composed of the slip plane and the crack embedded in the infinite solid
(Xu and Zhang, 2003).

Let �(x) denote the displacement along the slip plane and the opening displace-
ment of the crack. The total energy �[�(x)] of the system can be expressed by

�[�(x)] = W [�(x)] + V [�(x)] − P [�(x)], (1)

where W is the elastic strain energy, V is the interatomic layer potential energy, and
P is the work of external force. The elastic strain energy W for general anisotropic
solids is obtained by Xu (2004). The interatomic layer potential energy is given by

V [�(x) =
∫
s

�[�(x)]dS, (2)

where �[�(x)] is the interatomic layer potential per unit area of the slip plane, which
we model based on the generalized stacking fault energy calculated by our all atom
method.

The minimization of the potential energy �[�(x)] with respect to the displace-
ment �(x) leads to nonlinear integral equations. A finite element method with the
six-node triangular elements is used to discretize the slip plane and the crack. The
resulting nonlinear equations are solved by the Newton–Raphson method. The more
detailed numerical methodology is described in Xu et al. (1997).
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Fig. 2. The generalized stacking fault energy for slip planes (112) and (110) of tantalum.

4 Atomic Information and Calculations

The major advantage of our multiscale model is its capability to reduce many atomic
degrees of freedom to fewer, yet more physically intuitive, degrees of freedom. This
allows us not only to gain a greater understanding of the relevant physical process
controlling the system of study but also to study much larger systems with more
realistic geometries. However, an overriding problem with any multiscale approach
is the ability to know a priori if all of the relevant atomic information has been
properly taken into account in the multiscale model. One clear test to determine the
reliability of such methods, or at least to help gain confidence in it, is the ability for
the multiscale approach to reproduce results from that of all atom calculations. The
goal of this section is to calculate the atomic level information (generalized stacking
fault energy) which is incorporated into the variational boundary integral method and
to provide results from all atom simulations in order to make direct comparison with
our multiscale approach.

We represent the atomic scale interactions by employing a first-principles-based
embedded atom method (qEAM) (Strachan et al., 2003). This empirical potential has
been fitted to reproduce a host of ab initio calculations. The form of the potential is
as follows:

U({�ri}) =
∑
i

F (ρi) + 1

2

∑
i,j

ϕ(rij ), (3)

where F(ρi) is the embedding energy, ρi is the so-called electron density, ϕ(rij ) is
a two-body term and rij = |�ri − �rj |. Details of the functional form for each term
can be found in Strachan et al. (2005). Calculations for the generalized stacking fault
energy are carried out in periodic boundary conditions. Atoms are fully relaxed in the
direction perpendicular to the slip plane, while lattice vectors are not relaxed under
dilation. Figure 2 shows the profile of the generalized stacking fault energy for both
slip planes (112) and (110).
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Fig. 3. Shear displacement of a dislocation in a typical simulation cell.

All atom calculations are performed to obtain the critical stress required for nuc-
leation of a dislocation from a surface step. Figure 3 shows a typical simulation cell.
Periodic conditions are enforced. To determine the stress needed for the nucleation
of a dislocation we simply apply a shear strain to the system and calculate the stress
from the relation

σxz = − 1

Vc

∂E

∂εxz
, (4)

where E is the energy of the cell and Vc is its volume. At each particular strain
we minimize the energy functional, with respect to atomic positions, by the method
of conjugate gradients. Only motion along the slip direction [−1−11] is taken into
account. At a given strain the atomic configuration is relaxed such that the maximum
force on an atom along the slip direction is less than 6×10−5 eV/Å. At the instability
point a dislocation nucleates and our conjugate gradient method becomes unstable.
The atoms are then relaxed by a steepest decent method. To find the critical stress
τ we gradually increase the strain to that slightly beyond the critical point. Figure 3
also displays the shear displacement of the cell when a dislocation first becomes
nucleated on the slip plane (−121). The critical shear loading as a function of the
height of the step is plotted in Figure 4.

5 Dislocation Nucleation at a Surface Step by the Multiscale
Approach

The critical stress required for nucleation of a straight screw dislocation in the
[−1−11] direction on the (−110) or (−121) slip plane is also obtained by the
multiscale approach based on the variational boundary integral formulation of the
Peierls–Nabarro dislocation model. The ineratomic potentials on each slip plane are
modeled based on the obtained generalized stacking fault energy illustrated in Fig-
ure 2. The results are plotted in Figure 4 in comparison with the results obtained
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Fig. 4. Comparison of the critical stress for nucleation of a screw dislocation as a function of
step height between analytic solution, atomic calculation, and multiscale approach.

by the all atom calculations, together with the analytical solutions of the Peierls–
Nabarro model for dislocation nucleation along a smooth surface. The close agree-
ment between the analytic solutions and the multiscale calculation validates the nu-
merical accuracy of the multiscale calculation as well as the treatment of the surface
as a very large crack. The multiscale approach also compares quite well with the all
atom calculations as long as the finite size of the simulation box does not affect the
result significantly. In all cases the multiscale approach is within 15% of the all atom
solution. The slight discrepancy between the multiscale approach and the all atom
solution in predicting the slip system, (−110) vs. (−121), probably results from the
fact that the difference in the shear resistance profile of both slip systems. Despite
this discrepancy, the multiscale approach accurately predicts the critical stress and
the influence of surface steps. Moreover, in the multiscale approach the competition
between the two slip systems is evident, a fact that would be extremely difficult to
determine from an all atom calculation. The multiscale solution demonstrates that
the presence of stress concentration at surface steps can significantly facilitate dislo-
cation nucleation; the critical stress is reduced by over a factor of three for steps as
small as 20 nm in height.

6 Summary and Conclusions

Nucleation of a 〈111〉 screw dislocation at a step from a {112} surface of tantalum
has been studied by both an all atom method and a multiscale approach. In the
multiscale approach, the interatomic layer potential, modeled based on atomic cal-
culations of generalized stacking fault energies, is assumed along the slip plane. The
structure of the dislocation, represented by the relative displacement between two
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adjacent atomic layers along the slip plane, is solved by the variational boundary
integral method. The results show that atomic scale steps can reduce the critical
stress required for athermal nucleation of a dislocation by nearly an order of mag-
nitude. Comparison of the results of the multiscale approach with atomic calculations
demonstrates that the multiscale approach correlates well with the all atom method
for the study of the dislocation nucleation problem. Since the variational boundary
integral method provides superior control over the system of study and effective way
to solve saddle point configurations, such correlation further establishes the confid-
ence on this multiscale approach to explore dislocation nucleation in realistic geo-
metries of technological importance.
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Abstract. Using finite element method with the conventional J2 theory and strain gradient
theory respectively, the effect of the indenter tip radius on the micro-indentation hardness
is investigated in the present paper. It is found that the former can not predict the size ef-
fect even considering the indenter tip radius, while the latter gives a good agreement to the
experimentally measured micro-indentation hardness, which confirms that the size effect of
micro-indentation hardness does exist due to the factor of the strain gradient effect.

Key words: finite element method, size effect, micro-indentation hardness, indenter tip ra-
dius, conventional J2 theory, strain gradient theory.

1 Introduction

When a material or a structure possesses a micrometer scale, some mechanical char-
acters are different totally from those in macro scale. Size effect is a main phe-
nomenon found in the micro-scale, especially for the micro-indentation hardness [1–
3]. The micro-indentation hardness increases as the indent depth decreases, which
can not be explained by the conventional plasticity theory due to no length scale is
included. Strain gradient theories are proposed as an effectively theoretical tool to
understand the size effect, see for example [4–8].

Using the strain gradient theories, the size effect in micro-indentation hardness
has been studied [9–11] with an assumption that the indenter tip is perfect without a
curvature and the theoretically predicted results are consistent well with the experi-
mentally measured data.

As for the size effect in micro-indentation hardness, some researchers thought
that many experimental factors, such as the effect of the surface layer, the friction
between the indenter and the indented material, the indenter tip curvature, should
have a great influence on the measured hardness, which could cause an increasing
indentation hardness for a decreasing indent depth [12]. However, recent experiments
carried out by Swadener et al. [13] on a fine-grained polycrystalline iridium using
spherical indenters with different radius show a different trend from [12]: at a fixed
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indenter radius, the hardness decreases with the indentation depth decreasing for the
case of a/R < 0.2. One question arises from [12] and [13]: which result is right?
Of course, experiment is a believable truth, which is always adopted to check the
correctness of any theory.

In the present paper, the micro-indentation hardness tests will be analyzed nu-
merically using finite element method with the conventional J2 theory and strain
gradient theory proposed by Chen and Wang [7, 8] respectively. A conical indenter
with a round tip is considered. The effect of the indenter tip radius on the micro-
indentation hardness is emphasized.

The strain gradient theory is briefly reviewed in Section 2. The finite element
analysis in the present paper is given in Section 3. In Section 4, numerical results are
compared to the existing experimental data for several materials.

2 Review of Strain Gradient Theory

The incremental constitutive relations of the strain gradient theory [7, 8] are{
σ̇ij = 2µε̇′

ij + Kε̇mδij ,

ṁij = 2µl2csχ̇
′
ij + K1l

2
cs · χmδij ,

�e < σY , (1)

⎧⎪⎪⎨
⎪⎪⎩

σ̇ij = 2�e

3Ee

ε̇′
ij + 2�̇e

3Ee

ε̇ij − 2�e

3E2
e

ε̇ij Ėe + Kε̇mδij ,

ṁij = 2�e

3Ee

l2cs χ̇
′
ij + 2�̇e

3Ee

l2cs χ̇
′
ij − 2�e

3E2
e

l2csχ
′
ij Ėe + K1l

2
cs χ̇mδij ,

�e ≥ σY , (2)

where the generalized effective strain and the generalized effective stress are defined
as ⎧⎪⎨

⎪⎩
E2

e = ε2
e + l2csχ

2
e , �e = (σ 2

e + l−2
cs m2

e)
1/2,

σ 2
e = 3

2
sij sij , m2

e = 3

2
m′

ijm
′
ij .

(3)

Here εe is the effective strain, χe the effective rotation gradient and η1 the effective
stretch gradient, defined by Fleck and Hutchinson [4].

εe =
√

2

3
ε′
ij ε

′
ij , χe =

√
3

2
χijχij , η1 =

√
η
(1)
ijkη

(1)
ijk . (4)

The rotation gradient χij is defined as a curvature tensor related to the micro-rotation
ωi ,

χij = ωi,j . (5)

lcs is an intrinsic material length scale required on dimensional grounds. K is the
volumetric modulus, K1 the bend-torsion volumetric modulus. The influence of
stretch gradient is introduced by the following hardening law,
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⎪⎩ �̇e = A′(Ee)

(
1 + l1η1

Ee

)1/2

Ėe = B(Ee, l1η1)Ėe, �e ≥ σY ,

�̇e = 3µĖe, �e < σY ,

(6)

where B(Ee, l1η1) is the hardening function; σY is the yield stress and µ is the shear
modulus; For power law hardening material, A(Ee) = σYE

n
e ; l1 is the second in-

trinsic material length associated with the stretch gradient. The strain gradient the-
ory [7, 8] reduces to the conventional J2 deformation theory in the absence of strain
gradient effects.

3 Finite Element Analysis

The principal of virtual work and the detailed formulas of the finite element method
for the strain gradient theory [7, 8] can be found in [10].

3.1 The Coordinate System

It is convenient to express the field quantities in terms of cylindrical coordinate sys-
tem (r, θ, z). Both the geometry of the indented solid and loading are axis-symmetric.
The displacement field of the indented solid is

ur = ur(r, z), uθ = 0, uz = uz(r, z) (7)

and the micro-rotation field is

ωθ = ωθ (r, z), ωr = ωz = 0. (8)

3.2 The Blunt Conical Indenter

In order to simulate the micro-indentation test, the axis-symmetric model is adopted
in this paper. The blunt conical indenter and the axis-symmetric model are shown in
Figure 1. The contact depth can be expressed as:⎧⎨

⎩ δ(r) = r

tanβ
− ξ, r0 ≤ r ≤ a,

δ(r) = R − (R2 − r2)1/2, r ≤ r0,

(9)

where r0 = R cosβ, ξ = R/ sin β − R.
The assumptions in the numerical simulations and the boundary conditions can

be found in [10]. The indented body is taken to be a circular cylinder. The size of
the indented body is much larger than the depth of the indentation. On the whole
surface of the cylinder, the torque tractions are taken to be zero, which yields ωi = 0,
mij = 0 so that the influence of lcs can be ignored.
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Fig. 1. Blunted conical indenter and axis-symmetric model.

3.3 The Material Parameters

Young’s modulus and Poisson ratio can be obtained from the existing literature –
but the yield stress, power-law hardening exponent and intrinsic length scale need
to be determined by the numerical fitting method based on the simulation for the
experiment data. Following is the detailed steps:

1. Choose three values of depths h0, h1, h2 at large depth where the indentation
hardness nearly keeps constant, the corresponding loads P(h0), P(h1), P(h2)

can be obtained from the experiment data.
2. First, the values of n and l1 are prescribed and the initial value σY is chosen as

σy = σ , one can get P ∗(h0, σ, n, l1), P ∗(h1, σ, n, l1) and P ∗(h2, σ, n, l1) by
finite element calculations.

3. Introducing

F(σ, n, l1) =
2∑

i=0

(P ∗(hi, σ, n, l1) − P(hi))
2,

one can get the proper σ ∗ by the quasi-Newton method [14]:

σk+1 = σk − F(σk)

F ′(σk)
, F ′(σk) = F(σk) − F(σk−1)

σk − σk−1
,

which makes the functional F to be minimum minσ F (σ, n, l1) = G(n, l1). Ob-
viously, σ ∗ depends on n and l1 , that is, σ ∗ = σ ∗(n, l1).

4. Keeping l1 as a constant, for a given value n (0 ≤ n ≤ 1), carrying out the
above calculations to get each G(n, l1), then from the curve G(n, l1) versus n,
one can get the proper value n∗, which makes the functional G to be minimum
T (l1) = minn G(n, l1) = G(n∗, l1).

5. Finally, for a given value l1 (0 < l1 < 1 µm), carrying out above calculations to
get each T (l1), then from the curve T (l1) versus l1 to make minl1 T (l1) = T (l∗1 ).
The final parameters σn, n∗ and l∗1 are the needed yield stress σY , the power-law
hardening exponent n and the intrinsic length scales l1.
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Fig. 2. The indentation load P versus depth h, the calculation results are based on the classical
J2 plasticity theory.

4 Calculation Results and Comparison with the Test Data

The calculation results are shown in this section. Comparisons between the calcula-
tion results and the experimental indentation data are emphasized. The indenter tip
radius is taken to be R = 100 nm.

4.1 Calculation Results and Comparison with the Test Data

Figure 2a shows the results of the indentation load P versus indentation depth h

for single crystal silver. The solid line is the experimental results given by Ma and
Clarke [2] and the full circles are the present calculation results. Young’s modulus
E = 100.4 GPa and Poisson’s ratio ν = 0.2 were given by Ma and Clarke [2]. The
yield stress σY = 37.5 MPa and power-law hardening exponent n = 0.2 are obtained
by the fitting method of Section 3.3. It can be seen that the calculation results agree
well with the test results at deep depth, but lower than the test results at the shallower
depth.

The nominal indentation hardness H ∗ versus the indentation depth h for single
crystal silver is shown in Figure 3a. Here H ∗ = P/(24.56h2), which is defined by
Ma and Clarke [2]. From Figure 3a, one can see that the calculation results are much
lower than the test results for shallower depth.

The calculation results on polycrystalline copper are shown in Figures 2b and 3b
respectively, which have the same trends as Figures 2a and 3a.

Figure 4a shows the results of the indentation hardness H versus indentation
depth h for single crystal silver. The indentation hardness H is defined as H =
P/πa2.

Since one cannot directly measure the contact area, the existed experimental data
did not include any measured values of contact area. We only use the calculated val-
ues of the contact area instead the measured values of contact area. From Figure 4a,

195



www.manaraa.com

C.J. Tao et al.

Fig. 3. The nominal indentation hardness H ∗ versus depth h, the calculation results are based
on the classical J2 plasticity theory.

Fig. 4. The indentation hardness H versus depth h, the calculation results are based on the
classical J2 plasticity theory.

one can see that the calculation results are not only much lower than the test results,
but the hardness decreases with the decreasing depth when the depth is lower than
500 nm. It means that the predicted load and hardness based on the conventional J2
theory cannot agree well with the experimentally measured micro-indentation load
and hardness over a wide range of the indentation depth, even considering the effect
of indenter tip radius, which reveals that the indenter tip radius cannot explain the
size effect.
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Fig. 5. The indentation load P versus depth h, the calculation results are based on the strain
gradient theory [7, 8].

4.2 Calculation Results for Strain Gradient Theory

The above results clearly show that the effect of the indenter tip radius cannot explain
the size effect, so we carry out the calculations based on Chen and Wang’s strain
gradient theory [7, 8] with considering the influence of the indenter tip radius.

Figure 5a shows the results of the indentation load P versus indention depth h

for single crystal silver. The solid line is the experimental results given by Ma and
Clarke [2] and the full circles are the present calculation results. Young’s modulus
E = 100.4 GPa and Poisson’s ratio ν = 0.2 were given by Ma and Clarke [2]. The
yield stress σY = 37.5 MPa, power-law hardening exponent n = 0.2 and the intrinsic
length scale l1 = 0.4 µm are obtained by the fitting method of Section 3.3.

From Figure 5a, one can see that the predicted load agree very well with the
experimentally measured micro-indentation load over the whole range of the indent-
ation depth, which provides a validation of Chen and Wang’s strain gradient theory
[7, 8].

The nominal indentation hardness H ∗ versus the indention depth h for single
crystal silver is shown in Figure 6a.

From Figure 6a, one can see that the predicted nominal indentation hardness
agree very well with the experimentally measured nominal indentation hardness over
the whole range of the indentation depth. Similar calculations are carried out on
polycrystalline copper and shown in Figures 5b and 6b respectively, which have the
same trends as Figure 5a and 6a.

5 Conclusions

The predicted load and hardness based on the conventional J2 theory cannot agree
well with the experimentally measured micro-indentation load and hardness at mi-
cron scales even considering the indenter tip radius, which means that indenter tip
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Fig. 6. The nominal indentation hardness H ∗ versus depth h, the calculation results are based
on the strain gradient theory [7, 8]

radius is not the reason for size effect as some researchers said. While based on the
strain gradient theory proposed by Chen and Wang [7, 8], the predicted load and
hardness agree very well with the experimentally measured micro-indentation load
and hardness over a whole range of the indentation depth.
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Abstract. In the indentation delamination test, an indentation load generates a compressive
stress field to delaminate a film from its substrate and the interfacial fracture is always of a
mixed mode. The interfacial fracture toughness depends on the phase angle of the fracture
mixed mode. If the delaminated film buckles, the buckling induces a tensile stress field and
thus changes the phase angle and the measured value of interfacial fracture toughness. A
simple equation was derived to calculate the phase angle. Based on the simple equation and the
empirical formula, which describes the interfacial fracture toughness as a function of the phase
angle, relations among interfacial fracture toughness, phase angle and indentation load/crack-
length are discussed in details.

Key words: phase angle, interfacial fracture toughness, indentation, delamination, buckling.

1 Introduction

Thin films on substrates have been attracting intensive interests from academic and
industrial researchers due to their wide applications in the fields such as microelec-
tronics, optoelectronics and microelectromechanics, etc. The durability and reliabil-
ity of devices composed of thin films on substrates depend greatly upon the mech-
anical properties of film/substrate systems. One of the most important mechanical
properties is adhesion between a film and its substrate. When the adhesion is eval-
uated by fracture, it is more accurate to call it the interfacial fracture toughness.
Due to the small dimension of film thickness, it is a challenging task to accurately
measure the interfacial fracture toughness between a film and its substrate. Research-
ers are developing new techniques to characterize the interfacial fracture toughness
in film/substrate systems and six developed testing methods are briefly summarized
in a recent overview [1]. Among the six testing methods, the indentation-induced
delamination method is the most attractive approach because of its easiness and sim-
plicity. Furthermore, indentation tests may be more appropriate than other meth-
ods when sample size and/or testing region become very small. In the indentation-
induced delamination test, stresses near an interface crack tip are always comprised
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of both mode I and mode II components, thereby leading to a mixed mode fracture.
The mode mixity is characterized by a phase angle, ψ . Measured interfacial frac-
ture toughness depends on the phase angle. Jensen and Thouless [2] proposed the
following empirical formula,

�(ψ) = �c
I [1 + (1 − λ) tan2 ψ], (1)

where �(ψ) is the interfacial fracture toughness at a phase angle, ψ , �c
I (ψ = 0)

is the pure mode I interfacial fracture toughness, and λ is a fitting parameter. Since
�(ψ) changes with the phase angle, �c

I is the fundamental property to represent
the adhesion strength between a film and its substrate. To accurately determine the
value of �c

I from measured �(ψ), it is necessary to precisely determine the phase
angle. Huang et al. [3] investigated the phase angle for the indentation delamination
test and applied the theoretical results in the assessment of �c

I between ZnO and Si
[4]. The present work briefly reports the results published in [3] and discusses in
detail the relations among interfacial fracture toughness, phase angle and indentation
load/crack-length.

2 Energy Release Rate

Marshall and Evans [5] and Evans and Hutchinson [6] developed the fundament-
als for measuring interfacial fracture energy from the indentation-induced delamin-
ation test. They modeled the delamination region as a clamped circular plate with
a delamination radius, a, on a rigid substrate. During indentation testing on a
film/substrate system, an indenter penetrates and displaces a volume, VI , into the
film, which induces a compressive stress, σI , in the film,

σI = VIEf

2πhf a2(1 − νf )
, (2a)

where Ef , νf and hf are Young’s modulus, Poisson’s ratio, and thickness of the
film, respectively. The indentation-induced compressive stress is the driving force to
delaminate the film from the substrate and the corresponding strain energy release
rate, G, for the delamination is:

G = hf σ
2
I (1 − ν2

f )

2Ef
+(1−α)

hf σ
2
R(1 − νf )

Ef
−(1−α)

hf (σI − σB)2(1 − νf )

Ef
, (2b)

where σB is the critical buckling stress given by

σB = µ2Ef

12(1 − ν2
f )

(
hf

a

)2

, (2c)

with µ = 3.8317 for single buckling, σR denotes residual stress of the film, and the
parameter α is given by

α = 1 − 1

1 + 0.902(1 − νf )
, for σI + σR > σB (with buckling). (2d)
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3 Phase Angle

Based on the thin film approximation that the film thickness is much smaller than the
substrate thickness and considering only circular buckling, Huang et al. [3] derived
the phase angle, which takes the explicit form:

tanψ =
[

σI

σB
− 3.6304(1+νf )

µ2 ξ2
]

sin! − √
12 4.2156

µ2 ξ cos![
σI

σB
− 3.6304(1+νf )

µ2 ξ2
]

cos! + √
12 4.2156

µ2 ξ sin !
, (3)

where ξ is the ratio of the buckling amplitude at the center of the circular buckled
film to the film thickness, and ! is a dimensionless function of Dundurs’ elastic
mismatch parameters. Under the thin film approximation, Suo and Hutchinson [7]
calculated and tabulated the value of ! and ! = 52.1◦ if the film has the same
elastic constants as the substrate.

4 Relations among Interfacial Fracture Toughness, Phase Angle
and Load/Crack-Length

In the present work, we shall take the empirical formula, Equation (1), and make
assumptions that the interfacial fracture toughness is independent of the film thick-
ness and the film residual stress is a constant, etc in order to plot and illustrate the
relationship among the indentation load, the phase angle, and the energy release rate
in the indentation delamination tests with buckling. For simplicity, we re-write the
phase angle, Equation (3), the energy release rate, Equation (2), and the empirical
equation, Equation (1) in dimensionless forms:

tanψ =
(4)[

ṼI − 3.6304(1+νf )

µ2c
(ṼI + ãσ̃R − 1)

]
sin ! − √

12 4.2156
µ2

[
1
c (ṼI + ãσ̃R − 1)

]1/2
cos ![

ṼI − 3.6304(1+νf )

µ2c
(ṼI + α̃σ̃R − 1)

]
cos ! + √

12 4.2156
µ2

[
1
c (ṼI + ãσ̃R − 1)

]1/2
sin !

,

G̃ = (1 − α)σ̃ 2
R + [(1 + νf )Ṽ

2
I /2 − (1 − α)(ṼI − 1)2]/ã2, (5)

�̃ = �̃c
I [1 + (1 − λ) tan2 ψ], (6)

where

c = 0.2473(1 + νf ) + 0.2231(1 − ν2
f ), ṼI = 6(1 + νf )VI/(πµ2h3

f ),

ã = 12(1 − ν2
f )a

2/(µ2h2
f ), σ̃R = σR/Ef , G̃ = G/[(1 − νf )Ef hf ],

�̃ = �/[(1 − νf )Ef hf ], �̃c
I = �c

I /[(1 − νf )Ef hf ].
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Fig. 1a. Strain energy release rate and interfacial fracture toughness as a function of interface
crack length for indentation loads of ṼI = 0.9, 1.1, and 1.3.

In the dimensionless expression, the indentation volume represents the indenta-
tion load. Equation (5) indicates that for a given residual stress, the energy release
rate is determined by the indentation volume and the crack length. On the other
hand, the indentation volume and the crack length determine also the phase angle if
the residual stress and the value of ! are known. Once the phase angle, the mode I
interfacial fracture toughness, and the λ fitting parameter are known, the empirical
formula gives the interfacial fracture toughness. In following calculations, we took
! = 52.1◦, σ̃R = 0.0025, �̃c

I = 6 × 10−5, and λ = 0.5 for simplicity.
Figure 1 shows plots of G̃ and �̃ versus ã for different indentation loads of ṼI ,

where Figures 1a and 1b are gross and fine views, respectively. For a given indent-
ation load, both G̃ and �̃ drop with the extension of ã, but G̃ drops much faster
than �̃. Since G̃ represents the driving force for the delamination, a high indenta-
tion load will give a large value of G̃ for a given delamination radius. At a given
value of G̃, a high indentation load yields a large delamination radius. On the other
hand, �̃ represents the resistance of a film/substrate system against delamination.
Figure 2 illustrates that a high indentation load will give a small value of �̃ for a
given delamination radius. Under a given indentation load, the delamination radius
increases if the driving force is higher than the resistance. The delamination growths
until that the driving force is balanced by the resistance, which means that an in-
dentation load yields a delamination radius in a film/substrate system, as shown by
the intercepts of A, B, C between G̃ and �̃ curves under the three indentation loads
in Figure 1b. In addition, the intercepts give out the interfacial fracture toughnesses
under the three indentation loads. When the indentation load is increased, the equilib-
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Fig. 1b. Fine view of strain energy release rate and interfacial fracture toughness. The inter-
cept of two lines with same load gives out the equilibrium crack length and corresponding
interfacial fracture toughness at that load.

Fig. 2. Phase angle given by Equation (8) as a function of the crack length.

rium crack length increases and the interfacial fracture toughness decreases, which
is consistent with the experimental results [4, 8].

Alternately, we may determine the phase angle by combining the empirical for-
mula and the energy release rate based on the argument that at equilibrium, the en-
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Fig. 3. Superposition plots of phase angles of ψ and ψ̃ . The intercept of two lines with the
same indentation load determines the equilibrium crack length and corresponding phase angle
under that load.

ergy release rate should be balanced by the fracture resistance. In this sense, we may
assume that the empirical Equation (6) is also valid for crack extension force, i.e.,

G̃ = �̃c
I [1 + (1 − λ) tan2 ψ]. (7)

Combining Equation (7) with Equation (5) produces a phase angle as follows:

tan2 ψ̃ =
(1−α)σ̃ 2

R

�̃c
I

+ (1+νf )Ṽ
2
I /2−(1−α)(ṼI−1)2

α̃2�̃c
I

− 1

(1 − λ)
. (8)

Since Equation (5) has been discussed and plotted in [3], we plot Equation (8)
in Figure 2 with only positive values of the phase angle for clarity. Figure 2 shows
that for a given indentation load of ṼI , the phase angle decreases as the crack length
gets longer. For a given crack length, the phase angle increases as the indentation
load is higher. To determine the phase angle at the equilibrium state, we plot both
Equations (8) and (5) in Figure 3. The intercepts under same indentation loads, as
labeled with A, B, C in Figure 3, determine the equilibrium crack lengths and phase
angles for those loads. The trend of variation of crack length and phase angle with
the load is the same as that in Figure 1b. Furthermore, comparison of Figure 3 with
Figure 1b demonstrates that the equilibrium crack lengths are the same by the two
approaches.
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5 Concluding Remarks

The determination of the phase angle of an interface crack with buckling in the in-
dentation delamination test could be crucial in the assessment of the pure mode I
interfacial fracture toughness. In our previous work [3], we reported a simple for-
mula to calculate the phase angle of indentation delamination with buckling. The
results show that with the increase of buckling, the phase angle deviates from that
of unbuckle state and decreases smoothly from a positive value to a negative value,
reflecting the cooperation of indentation compressive stress and buckling induced
tensile stress. In the present work, we discuss the relations among interfacial frac-
ture toughness, phase angle and indentation load/crack-length. These discussions
are based on the empirical formula for interface fracture toughness. To demonstrate
these relationships, we have numerically calculated the phase angle, the energy re-
lease rate, and the interface fracture toughness. Although the calculations are based
on some assumptions with certain values of the parameters, the general approach
described in the present work should be applicable to general cases.
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Abstract. We provide an overview of our recent work on microscopic shape memory and
superelastic effects and their tribological applications.
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1 Introduction

Since the discovery of shape memory effect in NiTi in the 1960s, there have been
extensive efforts on understanding and applications of the shape memory and super-
elastic effects [1]. Recent years have seen an increasing interest in its tribological
applications. For example, shape memory alloys have desirable wear properties un-
der cavitation erosion [2–4] and dry sliding wear conditions [5–12]. In this paper, we
provide an overview of our recent studies which established the microscopic shape
memory and superelastic effects under complex loading conditions. We will also
discuss several novel tribological applications of shape memory and superelastic ef-
fects: (i) the use of shape memory NiTi alloys as self-healing surfaces, and (ii) the
use of the superelastic NiTi as an interlayer between a hard coating and a soft sub-
strate to improve interfacial adhesion, decrease friction coefficient, and improve wear
resistance.

2 Microscopic Shape Memory Effect and Self-Healing Surfaces

Contact induced surface damages are often unavoidable. It is thus highly desirable
to have a tribological system that can detect and heal such damages automatically.
The shape memory effect offers a possibility of self-healing in tribological applica-
tions. However, it was unknown whether shape memory effect existed at microscopic
length scales and under complex loading conditions such as indentation and sliding,
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Fig. 1. Shape memory NiTi: (a) recovery of spherical indents, and (b) relationship between
thermally activated recovery ratio and representative strain (0.2a/R), and the relationship
between the true stress and true strain.

although the shape memory effect was well established at macroscopic length scales
and under simple loading conditions such as tensile, compression, or shear. To estab-
lish the basis for using shape memory materials as self-healing tribological surfaces,
we have conducted a systematic investigation of the magnitude of shape recovery
on the surfaces of a martensitic NiTi alloy using indentation and scratch tests. The
indentation and scratch experiments can simulate an asperity contact under normal
and tangential loading, respectively.

Figure 1a shows the 3-D profiles of a spherical indent on the martensitic NiTi be-
fore and after recovery [13]. The recovery of the indent was induced by heating the
specimen to a temperature above the austenite finish temperature. The specimen al-
most completely recovered its original shape after being heated. This self-healing
capability of indents can be quantitatively characterized by defining a thermal-
induced recovery ratio, δ = (hf − h′

f )/hf , where hf is the residual indentation
depth recorded immediately after unloading and h′

f is the final indentation depth
after the completion of thermal-induced recovery [13, 14]. Our experimental study
shows that for spherical indentation δ depends on both the indenter radius and indent-
ation depth. The results can be rationalized using the concept of the representative
strain defined as, εr = 0.2a/R , where a and R are the contact radius and indenter
radius, respectively. Figure 1b shows the relationship between the thermo-induced
recovery ratio and the representative strain together with the stress-strain relation-
ship [14]. It shows that self-healing remains constant and almost complete until a
critical strain is reached. This critical strain, which coincides with the end of the
stress plateau in stress-strain curve, is the maximum recoverable strain.

The self-healing effect also exists in sliding contact [15]. Figure 2 shows the pro-
file of a scratch before and after recovery. The scratch was generated by a spherical
indenter with tip radius 213.4 µm using a progressive load from 0 to 10 N. It clearly
demonstrates that the scratch scar can be healed when the temperature is raised above
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Fig. 2. Self-healing of a scratch scar on a shape memory alloy.

Fig. 3. Three concepts for self-healing tribological surfaces.

its austenite finish temperature. The recovery is almost complete when the scratch
scar is shallow. Recently, we have explored the synergetic effects of combining hard
coatings and shape memory alloys as wear resistant self-healing tribological sur-
faces. Specifically, we investigated the indentation and scratch behavior of a NiTi
shape memory alloy with and without a thin CrN coating layer. We found that a CrN
layer can significantly improve the wear resistance of the NiTi shape memory alloy,
while maintaining the recovery ability of indents and scratches upon heating [16].
Figure 3 illustrates three concepts for self-healing tribological surfaces using shape
memory materials [17].
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Fig. 4. Load-displacement curves of Berkovich indents (a) and spherical indents (b) made in
an austenite NiTi alloy and Cu.

3 Microscopic Superelastic Effects and Strong Interfaces

Recently, we have also established microscopic superelastic effects using instru-
mented micro- and nano-indentation techniques [18]. Both spherical and Berkovich
diamond indenters were used for the investigation. Figures 4a and 4b are the typ-
ical load-displacement curves for the respective Berkovich and spherical indentation
in a superelastic NiTi alloy and in copper. The significant difference between the
load-displacement curves in NiTi and Cu is the magnitude of recoverable work re-
lative to total work. The total work required to move an indenter into a solid is the
area under the loading curve and the reversible work is the area under the unloading
curve. The area between the loading and unloading curves is the dissipated energy.
For elastic-plastic solids such as copper, the reversible and irreversible work result
from elastic and plastic deformation, respectively. In contrast to copper, a significant
amount of the total work of indentation in the superelastic NiTi alloy is reversible.
This indentation induced superelastic effect is much more pronounced under spher-
ical indentation than under Berkovich indentation.

The large difference in the magnitude of indentation-induced superelasticity is
the result of stress distribution under the two types of indenters. The stress at the
tip of a perfectly sharp pyramidal or conical indenter rises to a theoretically infin-
ite value at the apex unless plastic deformation occurs. A large volume of material
directly below the pyramidal indenter is therefore highly strained that significant
deformation occurred by dislocation motion rather than indentation induced phase
transformation. This volume would not, therefore, contribute to the superelastic be-
havior. In contrast, the maximum stress under the spherical indenter remains finite. It
would thus appear that the strain caused by the stress distribution under the spherical
indenter was largely accommodated by stress induced martensite formation, leading
to superelastic strain recovery upon unloading.

As an application of the microscopic superelastic effect, we compare the stress-
strain relationships, schematically shown in Figure 5, for superelastic NiTi alloy and
that for elastomeric polymer adhesives [1, 19]. Both of them have large recoverable
strain. However, the elastic modulus and strength of the superelastic NiTi alloy are
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Fig. 5. Schematic illustration of the stress-strain curves of superelastic NiTi (a), and elasto-
meric polymer (b).

several orders of magnitude greater than that of the polymeric adhesives. In addition,
a hysterisis loop, which arises from the internal friction, is associated with the stress-
strain curve of the superelastic NiTi. A part of the energy is thus consumed due to the
impedance to the movement of the phase boundaries between austenite and martens-
ite phases [1]. Considering the similarity between the stress strain relationships, we
have suggested that the superelastic NiTi material can act as a high strength metallic
adhesive for bonding ceramic coatings to ductile substrates by its large recoverable
strain, large stain tolerance, and energy dissipation [20, 21].

To test the idea of using superelastic interlayers to improve adhesion, we have
prepared, using magnetron sputtering techniques, thin film structures of CrN hard
coatings on aluminum substrates either with or without superelastic NiTi interlay-
ers. Temperature-controlled scratch tests were performed with a 100 micron radius
diamond indenter on a CSM Instruments Micro-Scratch Tester which also recorded
acoustic emission events. Scratch load was increased from zero to 5 N over the 1 mm
length of the scratch.

Results from the scratch tests are shown in Figure 6. Acoustic emission from
the CrN-only specimen indicated that film delamination commenced at loads near
2–2.5 N, decreasing slightly at higher temperatures between 298 and 398 K. In con-
trast, the CrN:NiTi:Al specimen exhibited a critical delamination load that increased
with temperature, from about 2 N at 298 K to about 4.4 N at 398 K. A substantial
jump in critical load is seen to occur at temperatures near the austenite finish temper-
ature (Af ), indicating that the improved performance is associated with temperatures
allowing superelastic response in the interlayer. Figure 6 also includes SEM micro-
graphs of the scratch terminations (with the full scratch shown in insets), indicating
that at temperatures above Af adhesion performance is greatly enhanced. In addition,
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Fig. 6. Results of temperature-controlled scratch tests. The micrographs at the right are scratch
terminations from the specimen with a 3.9 µm CrN hard coating on a 15 µm NiTi interlayer
on 6061 aluminum. Scratches were made at several temperatures as indicated. The AE scans
at the far left are for CrN coated aluminum without the NiTi interlayer, whereas the plots (and
micrographs) on the right are for the specimen with the NiTi interlayer.

we have shown that friction and wear characteristics can also be improved using a
superelastic interlayer [21, 22].

4 Conclusions

We have shown that microscopic shape memory and superelastic effects exist un-
der indentation and sliding contact conditions. The shape memory effect can be ex-
ploited for making self-healing tribological surfaces. By using the superelastic NiTi
alloy as an interlayer between a hard coating and a soft substrate, it is possible to
improve interfacial adhesion, thus providing protection of very soft substrates us-
ing hard coatings for which mechanical property mismatches are large. We hope the
results presented in this paper will stimulate future research on fundamentals and
applications of shape memory materials by the mechanics-materials community.
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Abstract. It is a well known fact that strain-driven self-assembly via Stranski–Krastonov
growth is a promising way to fabricate ordered quantum dot array. However, control of the
morphology remains to be a critical issue. One approach towards controlled self-assembly is,
but not limited to, epitaxial growth on patterned substrates or patterned epilayers. The pos-
sibility of controlling the growth morphology of quantum dots upon patterned substrates and
patterned epilayers is explored by numerical studies of three-dimensional phase field simula-
tion. The results indicate that, by creating appropriate patterns, such as topographical pattern
created in the substrate or epilayer, and periodically strained substrate, etc, the initial strain dis-
tributions on the surfaces of the substrate or epilayer can be altered, and thus the subsequent
evolution path of surface morphology under annealing can be controlled efficiently. This may
lead to highly ordered quantum dot array.

Key words: epitaxy, surface morphology, phase field method, pattern formation.

1 Introduction

In recent years there has been considerable experimental and theoretical interest in
self-assembly of three-dimensional quantum dot array due to their important applic-
ations in the development of fabricating novel photoelectronic and magnetic devices
[1–3]. One promising way is to employ the strain-driven self-organization process
during heteroepitaxial growth of thin films, where a lattice parameter mismatch
between the film and the substrate causes internal stresses in the thin film due to
the constraint of the substrate, driving the self-organization of surface morphology.
It turns out, however, that merely exploiting self-organized growth is far from suf-
ficient either for the physics or for the applications. The experimental observations
of heteroepitaxial growth have shown that in some cases, the quantum dots can be
increasingly uniform and regular, while in other cases, they are less ordered or even
disordered (refer to [1–3] and other cited references). This is because that spontan-
eous formation of the regular surface morphology is not uncommon and arises due

219

Yilong Bai et al. (eds), IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of
Nanostructured Materials, 219–228.
© 2007 Springer. Printed in the Netherlands.



www.manaraa.com

Y. Ni et al.

to the competing long- and short-range interactions, thereby they will not have per-
fect long range order. To date, controlling these quantum dot arrays in both size and
position, especially the degree of lateral ordering still becomes more of an issue.
One way to overcome this problem is controlled self-organized growth [4]. A typical
approach is tuning the self-organized growth through strain management, i.e. manip-
ulating the surface strain field of the substrate. It is widely accepted that the periodic
strain field can be induced by the subsurface island array, subsurface dislocation net-
work or the inclusions in the substrate etc., and the elastic energy distribution exhibits
pronounced minima and maxima in the lateral directions. This leads to a diffusional
bias of the deposited atoms and to a favorable surface nucleation site of the islands,
which are linked to the top island positions. Hence, the top islands may become in-
creasingly uniform, regular and vertically aligned due to these elastic interactions,
which are observed in many experiments [5–7].

Although many experimental results show that self-organized growth through
strain management, for example, through pre-patterned substrate or pre-patterned
epilayer technique to manipulate the growth kinetics of strain-driven quantum dot
formation during heteroepitaxial growth, is an effective means of guiding quantum
dots ordering. However, related theories are not well understood due to its com-
plexity. The present study is through three-dimensional phase field simulation to
investigate the effect of manipulating the surface strain field of the substrate in the
dynamics of self-organized epitaixal island formation under annealing, such as the
dynamics of film breaking up into islands and coarsening of islands. The surface
strain field of the substrate can be created by two ways, one is pre-patterning of the
substrate template, such as composition-modulated substrate, the substrate with a
buried topographic pattern, or with buried voids or inclusions, and the other is to-
pographically patterned epilayer. This paper is organized as follows. In Section 2,
a three-dimensional continuum phase field model to simulate the dynamics of self-
organized epitaixal island formation under annealing is briefly outlined. In Section 3,
several numerical examples on the possibility of controlling the growth morphology
of quantum dots upon patterned substrates and patterned epilayers will be provided;
some conclusions will be drawn in Section 4.

2 The Phase Field Model

Consider a thin film of cubic form with thickness h deposited on a substrate with
thickness H (H � h), as illustrated schematically in Figure 1.

Assume that both the film and substrate are linear elastic cubic crystals with
identical elastic constants. The epitaxial orientation is along the crystallographic
plane (h3 k3 l3), which is parallel to the substrate. A current orthogonal coordinate
system is introduced such that the z-axis is normal to the film-substrate interface, on
which its x- and y-axes are [h1 k1 l1] and [h2 k2 l2], respectively, denoted by means
of the Miller indices. Here, the inhomogeneities buried in the substrate induced by
the pre-patterned substrate technique are characterized by a homogeneous but spa-
tially varying mismatch strain, εmisfit

xx (r) and εmisfit
yy (r) in the x- and y-directions,
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Fig. 1. Sketch of a thin film on a lattice mismatched substrate.

respectively, while, the pre-patterned epilayer technique manipulates the distribution
of total stress field of the film/substrate system via modifying the initial surface con-
figuration. Once the strained film lose the flat surface shape under arbitrary small
fluctuation, and the roughness amplitude increases, eventually the film breaks into
islands caused by the strain-mediated surface diffusion. A phase field method is used
to handle this free boundary problem coupled with the solution of the complex stress
field with arbitrarily-shaped free surface and embedded inhomogeneity in the sub-
strate. A long-range order parameter η(r, t) was defined to denote the film-substrate
system, with r being the position vector of a point, and the total free energy was
enabled to be a function of this order parameter, e.g. η = 0 in the vacuum and η = 1
in the solid phase. Hence, the position dependent elastic modulus Cijkl (r) changed
its value from 0 to C0

ijkl for a transition from vacuum to solid. In the computation,
however, during evolution the value of the long-range order parameter might deviate
from 0 and 1 in the vacuum and solid, respectively, and the emergence of small neg-
ative values of Cijkl (r) would cause mechanical instability. To avoid this problem of
instability of the computation procedure, a scaled order parameter, which was termed
as the materials density distribution ρ(r(t) = 1/2[1+ tanh(2η(r, t)−1)/(2�)], was
introduced in [8], where � was a parameter chosen to control the interface thickness
between the solid and the vacuum. The elastic modulus Cijkl(r, t) is then described
as a linear function of ρ(r, t), i.e., Cijkl (r) = C0

ijklρ(r). For this heterogeneous
system, the total free energy can be expressed as

Etotal =
∫
V

{f [η(r)] + λ0[∇η(r)]2 + fel}d3r, (1)

where the first term in the integral is the bulk free energy in the absence of stress,
which is defined as a double-well function aη2(1 − η)2; and the second term is the
gradient energy corresponding to the interfacial energy between the vacuum and the
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solid phase, ∇ is the gradient operator, while a and λ0 are constants. The last term is
the strain energy density which is given by

fel = 1

2
Cijkl (r)(εij − εmisfit

ij (r))(εkl − εmisfit
kl (r)), (2)

where εij are the strain components to be determined later, and εmisfit
ij (r) is the spa-

tially varying epitaxial misfit strain tensor. Throughout this paper, the usual summa-
tion convention is adopted for repeated indices, where Latin indices take the value
of 1, 2 or 3, while Greek ones take the value of 1 or 2. Since surface diffusion is
typically the dominant mass transport mechanism during the annealing process, the
mass conservation requires the kinetic equation to be a Cahn–Hilliard equation

∂η

∂t
= ∇

[
D(η)

�kBT
∇ δEtotal

δη

]
, (3)

where � is the number of atomic sites per unit volume, kB is Boltzmann’s constant,
T is the absolute temperature and D(η) is the diffusion coefficient. Note that D(η)

is assumed to be a constant D in the vacuum and film and the difference between
the bulk and the surface diffusion coefficient is neglected for simplification, without
losing main physics; while D(η) = 0 in the substrate since it does not evolve dur-
ing film surface roughening. In the framework of phase field methods, the derived
strain energy density should also be a function of the long-range order parameter. To
determine the stress field of this heterogeneous system, the phase field microelasti-
city method proposed in [9] is adopted. Through a variational approach, this theory
has proven that the elastic strain and the strain energy of the heterogeneous system
with inhomogeneous elastic modulus can be calculated by establishing an equivalent
system with a homogeneous modulus C0

ijkl and a distributed pre-unknown effective

strain ε0
ij defined by

C0
ijkl [εkl(r) − ε0

kl(r) = Cijkl (r)[εkl(r) − εmisfit
kl (r)], (4)

where the pre-unknown effective strain ε0
ij are obtained by solving the following

phase field microelasticity (PFM) kinetic equation [9].

∂ε0
ij

∂t
= −Kijkl

∂E
equiv
elas

∂ε0
kl

. (5)

Once the effective strain ε0
ij has been obtained, the elastic strains and stresses can be

computed as follows:

εij (r) = ε̄ij
1

2

∫
d3ξ

(2π)3 (ξiG̃jk + ξj G̃ik)σ̃
0
kl(ξ)

∗ξleiξ ·r, (6)

σij (r) = C0
ijkl [εkl(r) − ε0

kl(r)], (7)
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where the integral
∫

in the Fourier space excludes the point ξ = 0, the elastic
constants and Green’s function tensor in the current coordinate system are obtained
through coordinate transformation, respectively [10]

C0
ijkl = �im�jn�kp�lqC

′
mnpq, (8)

G̃ij (ξ ) = �ik�jlG̃
′
kl(ζ ), (9)

where � is the coordinate transformation matrix defined as ri = �ikr
′
k , ζi = �jiξj ,

G̃′
im(ζ ) = ∫V G′

im(r′)e−iζ ·r′
d3r ′, C′

ijkl , G̃
′
kl(ζ ) and G̃ij (ξ ), C0

ijkl are the correspond-
ing elastic constants and Green’s function tensor in the natural x ′, y ′, z′-coordinate
system and in the current coordinate system, respectively.

After scaling the length and time such that x → x/l0 and t → t/π , where
l0 = √

λ0/a and τ = (λ0/Da) are the characteristic length and time scales, respect-
ively, a dimensionless parameter, ω = l/ l0, is defined with l = γ /µ(εmisfit)2. In our
preliminary computation, the periodic boundary condition is imposed and the simu-
lation is restricted to a cuboid cell of size 64l0 × 64l0 × 32l0, where ω = 2. The total
thickness of the system is 32l0, which consists of 21 layers of the substrate, 3 layers
of the film and 8 layers of the vacuum phase. The real grid size and the discrete time
step are taken as �x = 1.0l0 and �t = 0.02τ , respectively. In the computation, the
scaled kinetic coefficient is taken as K∗ = 10 and ν = 1/3 is assumed. The initial
random small fluctuation of surface morphology is added to allow the elastic misfit
strain to destabilize the film, which is described as the superposition of m static plane
waves with amplitude βm, wave numbers km and random phase shift angles φm, ϕm.

h(x, y) = h0 +
32∑

m=1

βm sin(kmx + φm) sin(kmy + ϕm), (10)

where h(x, y) is the film thickness; βm = 0.02 and km = 2πm/(64l0) are assumed.
The scaled Equations (3) and (5) can be solved numerically using a semi-implicit
Fourier-spectrum method and an explicit forward Euler method combined with the
FFT algorithm, respectively.

3 Results and Discussion

For our purpose is to investigate the effect of the pre-patterned substrate and epilayer,
we did not consider the effect of elastic anisotropy here. Namely, we adopted an
isotropic elasticity in the following numerical simulation. The first numerical results
for the case of unpatterned substrate are shown in Figure 2.

In the beginning of the annealing process, the amplitudes of some dominated
surface undulation increase, and the surface quickly evolves into random ripples.
Once the ripples break up to become islands, the coarsening process proceeds,
and the larger islands expand at the expense of smaller islands till a partly self-
organized island array emerges due to the long-range elastic interaction between
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Fig. 2. Typical evolving surface morphology on an unpatterned substrate during the annealing
process at a given time.

Fig. 3. Plot of the unidirectional mismatch strain modulation εmisfit
yy (x, y) = εmisfit

(1 + e−2(sin(πy/16)2))) where εmisfit = 0.02.

islands. For the pre-patterned substrate, the embedded inhomogeneity of the sub-
strate can be characterized by those resulted from an equivalent homogenous but
spatially varying mismatch strain. We consider first the effect of unidirectional mis-
match strain modulation on the dynamics of self-organized epitaixal island formation
under annealing. The distribution of mismatch strain is assumed to be of the form
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Fig. 4. Evolving surface morphology on the substrate with unidirectional mismatch strain
modulation during the annealing process at a given time.

εmisfit
yy (x, y) = εmisfit(1 + e−2(sin(πy/16)2)), εmisfit

xx = εmisfit with εmisfit = 0.02. The

plot of εmisfit
yy (x, y) is shown in Figure 3.

Because the strain field in the film and substrate are strongly dependent on both
the misfit strain modulation and the details of surface profile, which can be exactly
solved based on phase field microelasticity model. The corresponding evolution path
of surface morphology is shown in Figure 4.

We found that regions of lower mismatch strain are clearly served as preferred
areas for island formation thus leading to ordering in the direction, while in the dir-
ection, ordering is poorer since the mismatch strain in this direction is constant. By
comparison between Figures 2 and 4, we demonstrate that the distribution of period-
ically mismatch strain leads to directed quantum dot ordering. Further, we consider
the effect of two-dimensional distribution of mismatch strain modulation. The con-
tour plot of assumed mismatch strains is shown in Figure 5.

One can imagine that the evolving surface morphology of the epilayer will be
ordering in both the x and the y directions. From the simulation results presented
in Figure 6, it can be seen that the quantum dot array really is to show ordering in
both the x and the y directions, thereby leading to more regular distribution than for
a unidirectional mismatch strain modulation. In the last numerical example, we note
that the pre-patterned surface profile of the film could also result a periodic strain
distributions on the surfaces of the substrate. Figure 7 shows the evolving sequence
of surface morphology.
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Fig. 5. Contour plot the two-dimensional mismatch strain modulation εmisfit
xx = εmisfit

yy =
εmisfit(1 + e−2(sin(πx/16)2+sin(πy/16)2))) where εmisfit = 0.02.

Fig. 6. Evolving surface morphology on the substrate with two-dimensional mismatch strain
modulation during the annealing process at a given time.

An interesting observation is that the surface morphology evolution could be
modulated by initial surface configuration. Namely, the surface patterns depend not
only on the competition between the surface energy and the strain energy, but also
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Fig. 7. Evolving surface morphology on an unpatterned substrate with patterning surface of
the epilayer during the annealing process at a given time.

on the initial surface configuration. The surface evolution under annealing is strongly
history dependent.

4 Conclusion

In summary, the nonlinear surface evolution of the strained thin film under controlled
annealing is investigated by means of phase field model. Our preliminary numerical
results show that the evolving surface morphologies are strongly dependent on the
details of pre-patterned substrate and pre-patterned epilayer, which provide an ef-
fective means of guiding quantum dots ordering. We wish it to be realizable by com-
bining lithography, AFM and self-organized growth in the real fabrication process.
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Abstract. A constitutive model for thermoplastic polymeric materials and its finite element
implementation are presented. A five-step indentation scheme was formulated to extract a
complete list of the parameters in the constitutive model. Indentation tests on polymethyl-
methacrylate (PMMA), following the five-step and other schemes, were performed. The ex-
perimental data using the five-step scheme were used to extract all the parameters in the model.
The extracted parameters were then used to predict the other experimental results. Good agree-
ments between the experimental results and model prediction indicate that the five-step indent-
ation scheme is a practical approach to determine the mechanical properties of thermoplastic
polymers.

Key words: polymer, nanoindentation, viscoelastic, plasticity, constitutive model.

1 Introduction

The widely used nanoindentation techniques face some challenging issues when ap-
plied to polymeric materials. Not only time-independent elasto-plastic deformation
but also time-dependent viscoelastic/viscoplastic deformations are present during in-
dentation tests. To characterize the mechanical properties of polymeric materials,
two issues should be addressed: The first is to construct a proper constitutive model
which can capture not only time-independent elasto-plastic but also time-dependent
viscoelastic/viscoplastic deformations of polymers; and the other one is to accur-
ately and efficiently extract the material parameters in the constitutive model from
the load-depth curves obtained by indentation tests.

In the present paper, we first construct a phenomenological model to describe
all four types of deformations of polymeric materials, that is, elasticity, plasticity,
viscoelasticity and viscoplasticity by combining the mechanical elements of elastic,
plastic, and viscoelastic/viscoplastic units. Under the assumption that the effect of
loading rate is negligible and the strain hardening is absent, a five-step loading
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Fig. 1. The constitutive model used to describe the shear deformation of polymeric materials.
µ0 is the shear modulus of the elastic component; σ0 is the yield strength under pure shear
deformation; H(ε̄p) defines the hardening rule; µ1 is the shear modulus of the spring in Voigt–
Kelvin unit and η1 is the viscosity of the dashpot; η0 is the viscosity coefficient of the separate
dashpot. All the shear modulus are connected with the Young’s modulus by µi = Ei/2(1+ν)

(i = 0, 1) where ν is the Poisson’s ratio.

scheme is proposed to determine all the elastic, plastic and viscoelastic/plastic ma-
terial parameters in the model. Indentation experiments on polymethylmethacrylate
(PMMA) following the five-step scheme are performed. All materials parameters in
the model are extracted by fitting to the experimental results. The numerical pre-
dictions using these materials parameters are in good agreement with experimental
results.

2 Constitutive Model and Numerical Procedures

Four main kinds of deformations exist during indentation on amorphous polymeric
materials, namely, elastic, plastic, viscoelastic and viscoplastic deformations. To de-
scribe these features, a phenomenological model shown in Figure 1 is proposed.

The following two assumptions have been made:

(I) The volumetric response of polymeric materials is elastic under moderate hydro-
static pressure [1–5],

�σkk = 3K0�εkk, (1)

where K0 is the bulk modulus.
(II) The shear strain can be decomposed into elastic, plastic and viscoelastic/visco-

plastic components,

�eij = �eeij + �e
p
ij + �e

vep
ij , (2)
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where

σij = sij + 1

3
σkkδij , εij = eij + 1

3
εkkδij ,

δij is the Kronecker symbol; sij is the deviatoric part of the stress tensor σij ; and
eij is the deviatoric part of the strain tensor εij . Here the Einstein summation
convention is used.

The stress-strain relation of the elastic component follows a linear equation,

�eeij = �sij

2µ0
. (3)

The stress-strain relation of the viscoelastic/viscoplastic component in the model
shown in Figure 1 takes the following differential form,

2evepij = sij

{µ1 + η1∂t} + sij

{η0∂t} . (4)

For the plastic component, considering the yielding behavior of polymers may be
sensitive to the hydrostatic pressure and also influenced by the strain-rate, a modified
von Mises yield surface is usually adopted,

F = q − kP − [σ0 + H(ε̄p) + α log( ˙̄ε)], (5)

where

q =
√

3

2
sij sij

is the effective stress; k is the coefficient of internal friction, which reflects the ef-
fect of hydrostatic pressure on the yield function; P ≡ −σkk/3 is the hydrostatic
pressure; σ0 is the yield strength under pure shear deformation; H(ε̄p) defines the
hardening rule in terms of the effective plastic strain

ε̄p = ēp ≡
∫ t

0

√
2

3
ėij ėij dt;

the last term α log( ˙̄ε) introduces the effect of the strain rate using the logarithmic
function proposed by Eyring [6] in terms of the effective strain rate

˙̄ε ≡
√

1

2
ε̇ij ε̇ij .

The plastic components of the strain tensor are assumed to be proportional to
the derivative of the potential function with respect to the components of the stress
tensor by the associative flow rule [7],

�e
p
ij = 3

2
�ēp

sij |t+�t√
3
2sij |t+�tsij |t+�t

. (6)
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Fig. 2. Schematic illustration of the five-step test scheme.

The updated stress can now be calculated as,

sij |t+�t = 2µ0(e
e
ij |t + �eij − �e

vep
ij − �e

p
ij ). (7)

The consistency rule of the theory of plasticity which requires that F = Ḟ = 0 can
determine the scalable variable �ēp.

The constitutive model was implemented in the general-purpose finite ele-
ment program ABAQUS/Standard [8] by writing a user-defined material subroutine
UMAT. Finite deformation was considered.

3 A Five-Step Indentation Scheme

3.1 Separation of Time-Independent Plastic Deformation

It is known that the loading curves of elasto-plastic materials can be well fitted by a
power law,

P = Chn (8)

and for conical or pyramidal indenters, the power n is equal to 2 and C is a time-
independent constant depending only on the elasto-plastic properties of the mater-
ial. However, if the power law was applied to fit the loading curves of the present
visco-elastic-plastic material, it was found that C increases with the reduction of the
loading time when the maximum load was held fixed. Gradually, C approaches to the
upper limiting value, which corresponds to the extreme case of the model excluding
viscoelasticity/viscoplasticity.

Based upon our above analysis, a five-step test scheme (Figure 2) may be used to
study elastic-viscoelastic deformation and plastic deformation separately: (1) a fast
loading step to the maximum load Pmax, (2) a fast unloading step to a very small load
Pmin at 1% of Pmax, (3) an holding step under Pmin for a period of thold, (4) a fast
reloading step to the creep test load Pcreep, and (5) a final holding step for a period

232



www.manaraa.com

Studying Visco-Plasticity of Amorphous Polymers by Indentation Tests

of tcreep. The steps are based on the assumption that: the elastic-plastic deformation
is dominant during the fast loading/unloading steps (Steps 1 and 2), and only neg-
ligible viscoelastic/viscoplastic deformation is induced; the viscoelastic/viscoplastic
deformation is dominant during Steps 4 and 5, and negligible instantaneous plasti-
city is induced. The choice of Pcreep < Pmax is to prevent further time-independent
plastic deformation and ensure the dominance of the viscoelastic deformation during
the reloading and creeping steps. Hence the time-independent plastic deformation
can be isolated using the five-step loading scheme.

3.2 Formulating Time-Independent Plastic Deformation

To reduce the complexity of the plastic constitutive model while retaining the im-
portant features for describing the deformations of polymers, the following two sim-
plifications were made:

(I) Strain hardening is absent during the indentation test, i.e. H(ε̄p) = 0. Two facts
may justify the simplification: firstly, strain hardening only occurs at large strains
when the polymer chains are oriented in long extensions [9]; secondly, large
plastic strains are only localized near the indenter tip during indentation tests.

(II) The effect of the strain rate on instantaneous plastic deformation is negligible,
i.e., α ≈ 0 [10, 11]. This may be justified by the fact that the indentation tests are
normally performed at a relatively lower speed.

With these two simplifications, the plastic properties of a polymeric materials can be
fully described by only two material parameters: the yield strength under pure shear
deformation, σ0, and the internal friction coefficient, k.

Simulations were conducted to investigate the influence of the internal friction
coefficient k by using the current material model with very short loading times (that
is, to minimize the time-dependent deformation). It is found that a simple linear
equation exists between k and C:

C = a + b · k, (9)

where a and b are material-dependent parameters. For the elasto-plastic material
whose yield strength is insensitive to the hydrostatic pressure, i.e. k = 0, Dao et al.
[12] have proposed the following empirical relation,

C = a = N1σ0.29

(
1 + σy

σ0.29

)[
N2 + ln

(
E∗

σ0.29

)]
, (10)

where N1, N2 are computationally derived dimensionless constants which depend
only on indenter geometry; σy is the yield strength and σ0.29 is the stress when the
plastic strain reaches 0.29 under a tensile test; E∗ = E/(1 − ν2) is defined as the
reduced modulus where E, ν are the Young’s modulus and the Poisson’s ratio of the
sample material, respectively. For elastic-perfectly-plastic materials, σy = σ0.29 =
σ0, thus Equation (10) can be rewritten as,
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C = a = 2N1σ0

[
N2 + ln

(
E∗

σ0

)]
. (11)

For coefficient b in Equation (9), our parametric studies show that there is an expo-
nential function between b and σ0 when the reduced modulus is fixed. On the other
hand, an exponential relation between b/σ0 and 1/E∗ is also observed when σ0 is
fixed. Further comprehensive parametric studies combining the effects of both σ0 and
E∗ indicate that the coefficient b can be well described by the following equation,

b = σ0

[
M1 + M2 exp

(
−M3

σ0

E∗
)]

, (12)

where M1, M2 and M3 are also computationally derived dimensionless constants de-
pending only on indenter geometry. Substituting Equations (12) and (11) into Equa-
tion (9), one obtains,

C = 2N1σ0

[
N2 + ln

(
E∗

σ0

)]
+ σ0

[
M1 + M2 exp

(
−M3

σ0

E∗
)]

k. (13)

If the reduced modulus E∗ can be determined by the creep steps of the five-step
scheme, only two independent indentations are required to determine the two un-
knowns, that is, the yield strength under pure shear deformation, σ0, and the internal
friction coefficient, k. Here we propose to use two indenters with different geomet-
ries to get the equations,

C1 = 2N1
1σ0

[
N1

2 + ln

(
E∗

σ0

)]
+ σ0

[
M1

1 + M1
2 exp

(
−M1

3
σ0

E∗
)]

k,

C2 = 2N2
1σ0

[
N2

2 + ln

(
E∗

σ0

)]
+ σ0

[
M2

1 + M2
2 exp

(
−M2

3
σ0

E∗
)]

k. (14)

3.3 Formulating Elastic, Visco-Elastic-Plastic Deformation

Steps 4 and 5 were used to extract the elastic and visco-elastic-plastic properties
of polymeric materials using a sharp indenter. Analytical solutions to the elastic-
viscoelastic deformation based on the concept of “effective indenters” proposed by
both Pharr and Bolshakov [13] and Sakai [14] were derived by applying Radok’s
method [15]. The materials parameters related to elastic, visco-elastic-plastic de-
formation in the model can be extracted by fitting the equations with the deformation
data obtained from Steps 4 and 5 in the five-step indentation scheme. The formula-
tions and procedures for extracting the elastic, visco-elastic-plastic properties can be
found in our recent paper [16], thus will not be discussed in details here.

4 Experiments Using the Five-Step Scheme

Depth-sensing indentation experiments were performed on polymethylmethacrylate
(PMMA, E = 2.4 ∼ 3.3 GPa, tensile strength 0.085 GPa, Goodfellow Ltd, Hunt-
ingdon, UK) with the MTS Nano Indenter XP (MTS Cooperation, Nano Instruments
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Fig. 3. The coefficient C with the exponent n fixed at 2.

Innovation Center, Oak Ridge, TN, USA) under the load-control mode. Two different
indenters were used: a Berkovich indenter and a conical indenter of which the half-
included angle is 45◦. The X-Ray Diffraction (XRD) test shows the bulk PMMA is
amorphous.

Three groups of tests were conducted. The first group was carried out to determ-
ine the elastic-viscoelastic parameters using the five-step scheme with the Berkovich
indenter. The second group focusing on the loading curves was carried out to find the
coefficient C under the extreme condition with negligible viscoelastic influence us-
ing a triangle-wave loading history with different loading time. Both indenters were
used. The maximum load was fixed at 10 mN for the Berkovich indenter and fixed at
2 mN for the conical indenter. The last group was carried out using the Berkovich in-
denter to check the predictive capability of the present model. Both the triangle-wave
loading history and the three-segment loading history with arbitrary combinations of
the loading time, the holding time and the unloading time were used.

5 Material Parameter Extraction and Comparison

5.1 Determination of the Material Parameters

One can obtain the elastic, visco-elastic-plastic parameters of PMMA by following
the procedures proposed by Zhang et al. [16]: E0 = 3.1 GPa, v = 0.4, E1 = 6.5 GPa,
η1 = 855.5 GPa.s, η0 = 800.0 GPa.s. It can be seen that the values of these para-
meters are consistent with literature values [17].

Figure 3 shows the influence of the loading time on the coefficient C , where
the values of C were obtained by fitting the loading curves with P = Ch2. To
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Fig. 4. Comparison between experiment results and simulated results under a three-segment
loading history.

obtain a more accurate value of C, that is, without the influence of viscoelasti-
city/viscoplasticity, curve fitting and extrapolation was used to determine the value of
C as shown in Figure 3. It is found that C = 6.0132 GPa for the Berkovich indenter,
and C = 1.3131 GPa for the conical indenter.

The indenter geometry-dependent constants in Equation (14) can be found by
running a series of finite element simulations. It was found that N1

1 = 13.05, N1
2 =

−1.24, M1
1 = 3.90, M1

2 = 65.98, M1
3 = 64.44 for the Berkovich indenter, and N2

1 =
1.33, N2

2 = 0.25, M2
1 = 2.82, M2

2 = 16.68, M2
3 = 84.71 for the conical indenter.

By solving Equation (14), one obtains σ0 = 0.12GPa and k = 0.3. The theoretic
tensile strength, which can be calculated by σT = σ0/(1 + k3) = 0.108 GPa, is close
to the experimental values 0.085 GPa. In addition, the internal friction coefficient k
is also comparable to the literature value of 0.25 [18]. These minor differences may
be attributed to the difference in either materials, or experimental measurements or
the constitutive model.

5.2 Predictive Performance of the Present Model

Once all the material parameters in the constitutive model are fully determined by
the five-step indentation scheme, they can be used to predict the indentation beha-
vior of PMMA under other test conditions. Figures 4a and 4b show the comparison
between the experimental results and the simulation results under a three-segment
loading history, while Figures 5a, 5b and 5c show the comparison between the exper-
imental results and the simulation results under a triangle-wave loading history. Good
agreement between experiment results and model predictions implies that the model
provides a reasonable good description for thermoplastic polymers and the five-step
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Fig. 5. Comparison between experimental results and simulated results under a triangle-
loading history.

indentation scheme is a useful and practical approach to extract all the parameters in
the proposed model.

6 Summary

A constitutive model was proposed to describe the elastic, plastic and vis-
coelastic/viscoplastic deformations for polymeric materials. The model predictions
were compared with and verified by experimental results. A five-step indentation
scheme was proposed to extract all the parameters in the constitutive model. In-
dentation experiments on polymethylmethacrylate (PMMA) following the five-step
scheme were performed. To reduce the complexity of the model while retaining im-
portant features of mechanical responses, both the strain hardening and the strain
rate effect were neglected. The predictions using the extracted values of the elastic-
visco-elastic-plastic parameters are in good agreement with experimental results.
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Abstract. Paradoxical experimental observations are explained by studying the high-pressure
physical mechanics processes of graphite and carbon nanotubes (CNTs) and the macroscopic
mechanics behaviors in the experiments of diamond anvil cells (DAC). The stress concen-
tration on the graphite sample under non-hydrostatics compression in DAC experiments can
produce a new phase that is hard enough to crack the superhard diamond. Those soft to hard
phase transitions occur at the pressure of about 17 GPa for both graphite and CNTs, inde-
pendent of the shape and the size of the indenter and the amount of the graphite layers. And a
theoretical route is provided to industrially produce diamond and high strength CNTs-bundles
composite at room temperature by using of high-pressure technology. Physical mechanics of
nanomaterials in particular environment is also discussed.

Key words: graphite, carbon nanotubes, ultrahigh pressure, bond switching, physical mech-
anics.

1 Introduction

Carbon is the fourth most abundant element in the solar system, which can exist
in diverse polymorphs such as diamond, graphite, amorphous carbon, carbines, car-
bon nanotubes (CNTs), fullerences (C60, for example), and nanofoam [1]. These
polymorphs have great differences both in physical and mechanical properties. In
graphite, fullerences and CNTs, most of the carbon atoms are arranged in a struc-
ture of hexagonal rings with hybridized sp2 bonds. In amorphous carbon, triangle,
pentagon, or heptagon structures coexist. And in diamond, carbon atoms form sp3

bonds with the four nearest neighbors, creating the superhard pyramidal structure.
Graphite is very soft and opaque and also chemically inert, it can be used as lub-
ricant, electronic and thermal conductors, and high temperature materials. CNT is a
new material with high strength (the tensile strength of CNTs is approximately 100
times greater than that of steel), low specific gravity (the specific gravity of CNTs
is 1/6 that of steel) and excellent electronic properties, and it can be a conductor or
semiconductor. C60 is a spherical molecule, and it is a new kind of semiconductor
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and can also be a potential high temperature superconductor. Diamond is one of the
hardest materials with inert chemical properties and high compressive strength, and
it can be used as thermal conductors, cutting and wearable materials, and is also a
kind of expensive adornment. Can we have the magic to “Touch graphite and turn
it into diamond” just as the fairy tale says? It is indicated by experiments that those
polymorphs can transform into each other under certain conditions, such as high
pressure.

Ultrahigh pressure can change the atomic structure of matters, and it is an im-
portant method to find new phenomena and obtain new phases of materials. With
the development of the DAC technique, the high pressure beyond 400 GPa has been
obtained and widely used to study the physical and mechanical properties of mater-
ials under compression. It has been found in experiments that at the temperature of
20–700◦C, a high pressure of 12.5 GPa can convert fullerenes into polycrystalline
superhard amorphous carbon with the hardness as high as that of the single-crystal
diamond [2]. On the other hand, in graphite subjected to high pressure up to 65 GPa
at room temperature, no super-hardness is found after the pressure is removed [3].
But recently, a new phase hard enough to crack diamond anvils was obtained from
graphite undergoing a transition of sp2 to sp3 bonding at a pressure of about 17 GPa
[4].

CNTs can be one-dimensional conductor or semiconductor, depending on the
chiral structure and its atomic structure [5]. Its conductivity can be modulated by
mechanical deformations [6], and it can even be tuned as a single electron transistor
[7]. For the existence of unpaired electrons, CNTs can form chemical bonding with
other matters, so it is sensitive to the surroundings and can be used as gas ioniza-
tion sensors [8]. Therefore, controlling the bond switching and phase transition of
CNTs by compression may have significant potential in nanotechnology. The phys-
ical mechanics properties of CNT bundles under high pressure have been widely
studied [9–11]. Though the pressure treatment of single-wall CNTs to 62 GPa did not
produce an after-pressure-release superhard carbon phase [12], and intertube or inter-
layer sp3 bonding in single-walled CNT bundles was not observed up to a stress level
of 20 GPa in first-principles calculations [13], the nanoindentation of single-walled
CNTs can produce force-depth curves comparable to that of diamond in some ex-
periments [14]. However, the condition and mechanism of the bond formation, bond
broken and phase transition are paradoxical. To explain these incompatible experi-
ments, more study about the physical, chemical and mechanical properties of carbon
matters under high pressure is needed.

The physical mechanics, which can describe the recombination of the bonds of
carbon, should be developed to study the microscopic and macroscopic properties of
carbon structure under ultrahigh pressure. In that theory, the microscopic and macro-
scopic properties of carbon matter are predicted by study the microscopic mechanism
of the variety of the physical and mechanical properties of carbon structure induced
by the lattice recombination under ultrahigh pressure. That methodology can also
help us to find new door for synthesizing new carbon materials and improve the
design for better high-pressure experimental setup.

240



www.manaraa.com

Phase Transitions of Carbon Materials under High Pressure

Fig. 1. Variation of interlayer pressure with interlayer interatomic distance from the QM simu-
lations. The transition region is between 2.0 and 1.7 Å. The inset is the bi-layer graphite model
we used, in which all the boundary carbon-bonds are closed with H atoms. The atom-on-atom
stack is used to show more directly the relation between the pressure and the interatomic
distance [18].

Forming new structures of materials under ultrahigh pressure at room temperat-
ure is a practical and convenient alternative compared with the chemical methods.
In order to study the physical mechanical and the macroscopic mechanical behavior
of the carbon structures under ultrahigh pressure, we should combine the quantum
mechanics (QM), the molecular dynamics (MD) and the finite element (FE) analysis
together. In that scheme, the electronic processes, such as the electron transmission,
the band structure and the quantum effect can be described by the QM method, the
atomic and molecular processes, such as bonding formations, bonding breakings can
be described by the MD method, and the macroscopic behaviors such as stress and
strain can be described by the FE analysis [15–17]. In this work, we give a primary
study of the physical mechanical properties of carbon structures (we take graphite
and CNTs as examples) and carry out atomic simulations of the nanoindentation of
graphite and CNTs by the MD method, and a macroscopic mechanical analysis of
the DAC experiments of graphite by the FE method.

To describe the bonding formation of the carbon atoms of different interlayer, a
QM simulation is performed. In the QM simulation, a bi-layer graphite model, in
which each layer contains 60 atoms and all the boundary carbon-bonds are closed
with H atoms, is used (as shown in the inset of Figure 1). The interlayer distance was
reduced gradually to apply compressive stress. The atom-on-atom stack is used to
show more directly the relation between the stress and the interatomic distance. All
of the QM simulations of the compression of graphite sheet were performed using
the Roothaan-Hall form of Hartree–Fock formula, and the PM3 method [19]. It is
found that when the distance of the two graphite layers approaches 2 Å, the nominal
compressive stress increases sharply with the decreasing of the interlayer distance
and forms a peak at about 2 Å. When the distance is further compressed below 2 Å,
suddenly drop in stress occurs till the distance down to 1.7 Å. Within 1.7 Å, the stress
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Fig. 2. Transition of electronic structure occurs with decreasing interlayer distance of graphite
sheet under uniform compressing. (a) and (b) show the density distribution of the HOMO and
LUMO, respectively, and (c) shows the corresponding energy level of those molecular orbital
and there gap. The atomic model of the graphite sheet is the same as shown by the inset of
Figure 1.

increases steeply with the decreasing of the distance (Figure 1). This result indicates
that the bonding switching happens when the interlayer distance is about 2 Å∼1.7 Å.
To give a perspicuous explanation of the bonding switching, the density distribu-
tion of the highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) are shown in Figures 2a and 2b respectively. When the
inter-atomic distance decreases from 3.5 to 2.2 Å, both distributions of the HOMO
and LUMO remain similar shapes, but when the distance decreases further from 2.2
to 2.0 Å, interlayer overlap of the pattern start to develop and the widening of the
energy gap occurs, as shown by Figure 2c. When the distance goes further down to
1.8 Å, essential changes occur, such that the interlayer HOMO pattern first separates
and then merges at 1.7 Å. The corresponding transition in the pattern shapes of the
LUMO density is also remarkable around 2.0 Å, and the energy gap widens with
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Fig. 3. Hardness-indentation depth curve of a graphite sample. Insets at points b, c, d, f show
the atomic geometrical structures and the interlayer sp3 bonding at the points (modified from
[25, figure 1]).

a higher speed. These show that the sp2–sp3 transition occurs when the interatom
distance is between 2.0 and 1.7 Å. This result is consistent with the MD simulations
in the following section.

In the MD simulation, the second generation C-C potential developed by Brenner
[20, 21] is used to describe the bonds interaction, bonding switching and break-
ing of carbon atoms, and the nonbonded long-range interaction is modeled with the
Lennard–Jones 6–12 potential [22]. To simulate the process of nanoindentation, the
virtual nanoindenter is used. In this method, a repulsive potential in the form of
V (r) = Aθ(R − r)(R − r)3 is used for both the indenter and the substrate to avoid
the interlinking [23] with the carbon atoms. Here A is a force constant, θ(x) is the
step function, R is radius of the indenter, and r is the distance from the carbon atom
to the center of the indenter sphere. In all of our simulations, the indenter is pressed
at the center of the samples and penetrates with a speed of 5 m/s, and a constant
temperature system (NVT) with the temperature of 300 K is used. The method of the
temperature controlling is the Berendsen scheme [24], and the time step is 1 fs.

Figure 3 shows the nano-hardness (defined as the indentation load divided by the
contact area) of graphite as a function of the indentation depth. It is found that there
are three distinctive phases of graphite in this simulation: the soft phase (phase I,
from a to b, where the nearest distance between the different layers is about 2 Å), the
hard phase (phase II, from b to f, the modulus is about 730 GPa, which is comparable
to the corresponding value of diamond [26]) and the unstable phase (phase III, from
f to g, the compressive load begin to drop beyond f where the nano-hardness is about
109 GPa). These phenomena are caused by the interlayer sp2–sp3 bonding switching
[25]. The hard phase can further be divided into two different sub-stages (IIa (from
b to d) and IIb (from d to f)) though the compressive slopes are the same. In stage
IIa , the interlayer sp3 bonding of the graphite sample is recoverable once unloading,
showing the super-hard elastic property similar to that of CNTs [27], while entering

243



www.manaraa.com

W. Guo et al.

Fig. 4. Nano-hardness of graphite sample under planar compression under free and periodical
boundary conditions. (a) The atomic model which contains five layers of graphite. The top
and the bottom layers are fixed in plane, served as the grip gear. (b) The nano-hardness of the
graphite sample under planar compression with free and periodical boundary conditions.

in stage IIb, the interlayer sp3 bonding of the sample becomes permanent even when
the compressive loading is removed. The bond type analysis indicates that at point c,
where a drop in nano-hardness occurs, the first sp3 bond form; at point d, where the
nano-hardness is about 75 GPa, residual sp3 bonds exist after the loading is removed
(this is proved by a latest experiment [28]), and beyond point f, where the hardness
become unstable, an amorphous phase with sp2 and sp3 bonds coexisting is found.
These results are consistent with experimental observations.

To remove the effect of the shape of the indenter on the nano-hardness, calcula-
tions of planar compression are carried out (Figure 4). It is found that the limiting
stress in the planar compression case with periodic boundary condition (BC), where
no shear stress can occur, can smoothly increase to more than 800 GPa before the
first large stress drop occurs, which is much higher than ∼100 GPa in the indentation
case. When the free BC is applied, the planar compression leads to the nominal pres-
sure strength of about 250 GPa. However, the soft-hard phase transition still occurs
at about 17 GPa under both the free BC and the periodic BC, which is similar to the
indentation case.

Calculations of compressions of different layers are also performed to investigate
the influence of the amount of the layers on the hardness (Figure 5). In these cases,
although the limiting hardness of the graphite sheet may be influenced by the number
of graphite layers, but the soft-hard transition is little affected. Under free boundary
condition, samples with more layers become unstable under compression.

Nano-indentation of CNTs gives similar results with those of graphite. The nano-
hardness of the (6, 6)/(11, 11) bi-walled CNT is shown in Figure 6. Spheric in-
denters with different radius (2.5 nm and 5 nm) are used to depict the effect of
indenter size on the nano-hardness. The soft-hard transition also occurs when the
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Fig. 5. The influence of number of graphite layers on the hardness. The model is similar to that
shown in Figure 4, but with 5, 7 and 9 layers of graphite, and the periodic boundary condition
is used.

Fig. 6. Nano-hardness of the (6,6)/(11,11) bi-walled CNTs with different indenter radius. The
model is the same as that in [25].

compressive stress is about 17 GPa. Increasing the tip radius from 2.5 to 5 nm pro-
duces little changes on the results.

The maximal hardness of the graphite shows close relationship to the shear stress
induced by the non-hydrostatics compression, and the hardness can reach up to 1 TPa
under ideal hydrostatic compression. According to the elasticity theory, under non-
hydrostatics compression, the stress concentration on the boundary surface exists.
To describe this macroscopic mechanical behavior during the process of the DAC
experiment of graphite samples, FE calculations are carried out to examine the stress
distributions along the contact boundary using the code ANSYS.

In the FE model (Figure 7), eight-node axis-symmetry elements are adopted for
the spatial axial symmetry and horizontal. The interfacial friction and nonlinear con-
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Fig. 7. The finite element model and the radial distributions of the stress components on the
diamond interface. (a) The spatial axis-symmetry FE model of the diamond culet contacted
with the disk-shape graphite sample, where the radii of the table R and the sample r are
850 µm and 150 µm respectively. (b) The snapshot of the mesh refinement at the boundary
corner, where the radius of the sample blunt edge is 2 µm. (c) The snapshot of the interface
between the diamond and the graphite. (d) The stress components are plotted as functions of
the radial distance when the average stress in the mid plane of the graphite sample is 17 GPa.
The compressive stress σy , the Von-Mises equivalent stress σe , and the shear stress (σy−σx)/2
curves near the boundary are plotted in the insets.

tact between the diamond and graphite are included using contact pair elements.
The modulus of the hard-phase graphite is 730 GPa, which is obtained from the
above MD simulations, the modulus of diamond is 1000 GPa, the friction coefficient
is 0.1, and the Poisson ratio is 0.2. The absolute values of the stresses all increase
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sharply near the contact boundary, and can exceed 100 GPa, which is the compressive
strength of diamond, in certain regions around the edge when the average pressure in
the graphite sample is 17 GPa as the conditions in the experiment of Mao et al. [4].
These results can explain why diamond anvil is cracked by graphite sample in the
DAC experiment at nominal pressure of 17 GPa. Changes in the friction coefficient
from 0.05 to 0.1 and the Poisson ratio from 0.1 to 0.29 do not change the general
trend.

In conclusion, both graphite and CNTs present soft-hard transformation at the
pressure of about 17 GPa during the nanoindentation or uniform compression. Due to
the formations of interlayer sp3 bonds under high pressure, the modulus of graphite
can exceed 730 GPa in the hard phase. This phase transition is independent of the
shape and the size of the indenter and the amount of the graphite layers though
they may affect the nano-hardness and the strength. The phase transition between
the soft and hard phases is recoverable when the compressive stress is lower than
a certain value, for graphite the value is about 74 GPa; beyond that value some of
the interlayer sp3 become permanent even after unloading. The nano-hardness can
reach 109 GPa in the graphite sample, which exceeds the strength of diamond of 100
GPa. And in the DAC experiments of graphite under non-hydrostatics compression,
the maximal concentrated stress can exceed 100 GPa when the average pressure is 17
GPa in the sample. These results can explain the seemingly paradoxical experimental
observations that graphite sheets can be hard enough to crack the super-hard diamond
anvil during a compressive process at 17∼23 GPa in the DAC experiments, while no
hard phase can be detected in graphite and CNTs after unloading from high pressure
up to 65 GPa.

Under particular conditions such as high pressure, confined system, electric field,
magnetic field, iron and laser irradiation, and high temperature, the electronic and
atom structure of matter can be changed, and new phase, new materials and new
properties may appear. By use of physical mechanics, we can describe different phe-
nomena in different scales, which can lead to the synthesis of new materials in more
ordinary and convenient ways.
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75. J.T. Pindera: Techniques of Tomographic Isodyne Stress Analysis. 2000 ISBN 0-7923-6388-4
76. G.A. Maugin, R. Drouot and F. Sidoroff (eds.): Continuum Thermomechanics. The Art and

Science of Modelling Material Behaviour. 2000 ISBN 0-7923-6407-4
77. N. Van Dao and E.J. Kreuzer (eds.): IUTAM Symposium on Recent Developments in Non-linear

Oscillations of Mechanical Systems. 2000 ISBN 0-7923-6470-8
78. S.D. Akbarov and A.N. Guz: Mechanics of Curved Composites. 2000 ISBN 0-7923-6477-5
79. M.B. Rubin: Cosserat Theories: Shells, Rods and Points. 2000 ISBN 0-7923-6489-9
80. S. Pellegrino and S.D. Guest (eds.): IUTAM-IASS Symposium on Deployable Structures: Theory

and Applications. Proceedings of the IUTAM-IASS Symposium held in Cambridge, U.K., 6–9
September 1998. 2000 ISBN 0-7923-6516-X

81. A.D. Rosato and D.L. Blackmore (eds.): IUTAM Symposium on Segregation in Granular
Flows. Proceedings of the IUTAM Symposium held in Cape May, NJ, U.S.A., June 5–10,
1999. 2000 ISBN 0-7923-6547-X

82. A. Lagarde (ed.): IUTAM Symposium on Advanced Optical Methods and Applications in Solid
Mechanics. Proceedings of the IUTAM Symposium held in Futuroscope, Poitiers, France,
August 31–September 4, 1998. 2000 ISBN 0-7923-6604-2

83. D. Weichert and G. Maier (eds.): Inelastic Analysis of Structures under Variable Loads. Theory
and Engineering Applications. 2000 ISBN 0-7923-6645-X

84. T.-J. Chuang and J.W. Rudnicki (eds.): Multiscale Deformation and Fracture in Materials and
Structures. The James R. Rice 60th Anniversary Volume. 2001 ISBN 0-7923-6718-9

85. S. Narayanan and R.N. Iyengar (eds.): IUTAM Symposium on Nonlinearity and Stochastic
Structural Dynamics. Proceedings of the IUTAM Symposium held in Madras, Chennai, India,
4–8 January 1999 ISBN 0-7923-6733-2

86. S. Murakami and N. Ohno (eds.): IUTAM Symposium on Creep in Structures. Proceedings of
the IUTAM Symposium held in Nagoya, Japan, 3-7 April 2000. 2001 ISBN 0-7923-6737-5

87. W. Ehlers (ed.): IUTAM Symposium on Theoretical and Numerical Methods in Continuum
Mechanics of Porous Materials. Proceedings of the IUTAM Symposium held at the University
of Stuttgart, Germany, September 5-10, 1999. 2001 ISBN 0-7923-6766-9

88. D. Durban, D. Givoli and J.G. Simmonds (eds.): Advances in the Mechanis of Plates and Shells
The Avinoam Libai Anniversary Volume. 2001 ISBN 0-7923-6785-5

89. U. Gabbert and H.-S. Tzou (eds.): IUTAM Symposium on Smart Structures and Structonic Sys-
tems. Proceedings of the IUTAM Symposium held in Magdeburg, Germany, 26–29 September
2000. 2001 ISBN 0-7923-6968-8
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90. Y. Ivanov, V. Cheshkov and M. Natova: Polymer Composite Materials – Interface Phenomena
& Processes. 2001 ISBN 0-7923-7008-2

91. R.C. McPhedran, L.C. Botten and N.A. Nicorovici (eds.): IUTAM Symposium on Mechanical
and Electromagnetic Waves in Structured Media. Proceedings of the IUTAM Symposium held
in Sydney, NSW, Australia, 18-22 Januari 1999. 2001 ISBN 0-7923-7038-4

92. D.A. Sotiropoulos (ed.): IUTAM Symposium on Mechanical Waves for Composite Structures
Characterization. Proceedings of the IUTAM Symposium held in Chania, Crete, Greece, June
14-17, 2000. 2001 ISBN 0-7923-7164-X

93. V.M. Alexandrov and D.A. Pozharskii: Three-Dimensional Contact Problems. 2001
ISBN 0-7923-7165-8

94. J.P. Dempsey and H.H. Shen (eds.): IUTAM Symposium on Scaling Laws in Ice Mechanics
and Ice Dynamics. Proceedings of the IUTAM Symposium held in Fairbanks, Alaska, U.S.A.,
13-16 June 2000. 2001 ISBN 1-4020-0171-1

95. U. Kirsch: Design-Oriented Analysis of Structures. A Unified Approach. 2002
ISBN 1-4020-0443-5

96. A. Preumont: Vibration Control of Active Structures. An Introduction (2nd Edition). 2002
ISBN 1-4020-0496-6

97. B.L. Karihaloo (ed.): IUTAM Symposium on Analytical and Computational Fracture Mechan-
ics of Non-Homogeneous Materials. Proceedings of the IUTAM Symposium held in Cardiff,
U.K., 18-22 June 2001. 2002 ISBN 1-4020-0510-5

98. S.M. Han and H. Benaroya: Nonlinear and Stochastic Dynamics of Compliant Offshore Struc-
tures. 2002 ISBN 1-4020-0573-3

99. A.M. Linkov: Boundary Integral Equations in Elasticity Theory. 2002
ISBN 1-4020-0574-1

100. L.P. Lebedev, I.I. Vorovich and G.M.L. Gladwell: Functional Analysis. Applications in Me-
chanics and Inverse Problems (2nd Edition). 2002

ISBN 1-4020-0667-5; Pb: 1-4020-0756-6
101. Q.P. Sun (ed.): IUTAM Symposium on Mechanics of Martensitic Phase Transformation in

Solids. Proceedings of the IUTAM Symposium held in Hong Kong, China, 11-15 June 2001.
2002 ISBN 1-4020-0741-8

102. M.L. Munjal (ed.): IUTAM Symposium on Designing for Quietness. Proceedings of the IUTAM
Symposium held in Bangkok, India, 12-14 December 2000. 2002 ISBN 1-4020-0765-5

103. J.A.C. Martins and M.D.P. Monteiro Marques (eds.): Contact Mechanics. Proceedings of the
3rd Contact Mechanics International Symposium, Praia da Consolação, Peniche, Portugal,
17-21 June 2001. 2002 ISBN 1-4020-0811-2

104. H.R. Drew and S. Pellegrino (eds.): New Approaches to Structural Mechanics, Shells and
Biological Structures. 2002 ISBN 1-4020-0862-7

105. J.R. Vinson and R.L. Sierakowski: The Behavior of Structures Composed of Composite Ma-
terials. Second Edition. 2002 ISBN 1-4020-0904-6

106. Not yet published.
107. J.R. Barber: Elasticity. Second Edition. 2002 ISBN Hb 1-4020-0964-X; Pb 1-4020-0966-6
108. C. Miehe (ed.): IUTAM Symposium on Computational Mechanics of Solid Materials at Large

Strains. Proceedings of the IUTAM Symposium held in Stuttgart, Germany, 20-24 August
2001. 2003 ISBN 1-4020-1170-9
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109. P. Ståhle and K.G. Sundin (eds.): IUTAM Symposium on Field Analyses for Determination
of Material Parameters – Experimental and Numerical Aspects. Proceedings of the IUTAM
Symposium held in Abisko National Park, Kiruna, Sweden, July 31 – August 4, 2000. 2003

ISBN 1-4020-1283-7
110. N. Sri Namachchivaya and Y.K. Lin (eds.): IUTAM Symposium on Nonlinear Stochastic

Dynamics. Proceedings of the IUTAM Symposium held in Monticello, IL, USA, 26 – 30
August, 2000. 2003 ISBN 1-4020-1471-6

111. H. Sobieckzky (ed.): IUTAM Symposium Transsonicum IV. Proceedings of the IUTAM Sym-
posium held in Göttingen, Germany, 2–6 September 2002, 2003 ISBN 1-4020-1608-5

112. J.-C. Samin and P. Fisette: Symbolic Modeling of Multibody Systems. 2003
ISBN 1-4020-1629-8

113. A.B. Movchan (ed.): IUTAM Symposium on Asymptotics, Singularities and Homogenisation
in Problems of Mechanics. Proceedings of the IUTAM Symposium held in Liverpool, United
Kingdom, 8-11 July 2002. 2003 ISBN 1-4020-1780-4

114. S. Ahzi, M. Cherkaoui, M.A. Khaleel, H.M. Zbib, M.A. Zikry and B. LaMatina (eds.): IUTAM
Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of
Engineering Materials. Proceedings of the IUTAM Symposium held in Marrakech, Morocco,
20-25 October 2002. 2004 ISBN 1-4020-1861-4

115. H. Kitagawa and Y. Shibutani (eds.): IUTAM Symposium on Mesoscopic Dynamics of Fracture
Process and Materials Strength. Proceedings of the IUTAM Symposium held in Osaka, Japan,
6-11 July 2003. Volume in celebration of Professor Kitagawa’s retirement. 2004

ISBN 1-4020-2037-6
116. E.H. Dowell, R.L. Clark, D. Cox, H.C. Curtiss, Jr., K.C. Hall, D.A. Peters, R.H. Scanlan, E.

Simiu, F. Sisto and D. Tang: A Modern Course in Aeroelasticity. 4th Edition, 2004
ISBN 1-4020-2039-2

117. T. Burczyński and A. Osyczka (eds.): IUTAM Symposium on Evolutionary Methods in Mechan-
ics. Proceedings of the IUTAM Symposium held in Cracow, Poland, 24-27 September 2002.
2004 ISBN 1-4020-2266-2

118. D. Ieşan: Thermoelastic Models of Continua. 2004 ISBN 1-4020-2309-X
119. G.M.L. Gladwell: Inverse Problems in Vibration. Second Edition. 2004 ISBN 1-4020-2670-6
120. J.R. Vinson: Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials,

Including Sandwich Construction. 2005 ISBN 1-4020-3110-6
121. Forthcoming
122. G. Rega and F. Vestroni (eds.): IUTAM Symposium on Chaotic Dynamics and Control of

Systems and Processes in Mechanics. Proceedings of the IUTAM Symposium held in Rome,
Italy, 8–13 June 2003. 2005 ISBN 1-4020-3267-6

123. E.E. Gdoutos: Fracture Mechanics. An Introduction. 2nd edition. 2005 ISBN 1-4020-3267-6
124. M.D. Gilchrist (ed.): IUTAM Symposium on Impact Biomechanics from Fundamental Insights

to Applications. 2005 ISBN 1-4020-3795-3
125. J.M. Huyghe, P.A.C. Raats and S. C. Cowin (eds.): IUTAM Symposium on Physicochemical

and Electromechanical Interactions in Porous Media. 2005 ISBN 1-4020-3864-X
126. H. Ding, W. Chen and L. Zhang: Elasticity of Transversely Isotropic Materials. 2005

ISBN 1-4020-4033-4
127. W. Yang (ed): IUTAM Symposium on Mechanics and Reliability of Actuating Materials.

Proceedings of the IUTAM Symposium held in Beijing, China, 1–3 September 2004. 2005
ISBN 1-4020-4131-6
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128. J.-P. Merlet: Parallel Robots. 2006 ISBN 1-4020-4132-2
129. G.E.A. Meier and K.R. Sreenivasan (eds.): IUTAM Symposium on One Hundred Years of

Boundary Layer Research. Proceedings of the IUTAM Symposium held at DLR-Göttingen,
Germany, August 12–14, 2004. 2006 ISBN 1-4020-4149-7

130. H. Ulbrich and W. Günthner (eds.): IUTAM Symposium on Vibration Control of Nonlinear
Mechanisms and Structures. 2006 ISBN 1-4020-4160-8

131. L. Librescu and O. Song: Thin-Walled Composite Beams. Theory and Application. 2006
ISBN 1-4020-3457-1

132. G. Ben-Dor, A. Dubinsky and T. Elperin: Applied High-Speed Plate Penetration
Dynamics. 2006 ISBN 1-4020-3452-0

133. X. Markenscoff and A. Gupta (eds.): Collected Works of J. D. Eshelby. Mechanics of Defects
and Inhomogeneities. 2006 ISBN 1-4020-4416-X

134. R.W. Snidle and H.P. Evans (eds.): IUTAM Symposium on Elastohydrodynamics and Microelas-
tohydrodynamics. Proceedings of the IUTAM Symposium held in Cardiff, UK, 1–3 September,
2004. 2006 ISBN 1-4020-4532-8

135. T. Sadowski (ed.): IUTAM Symposium on Multiscale Modelling of Damage and Fracture
Processes in Composite Materials. Proceedings of the IUTAM Symposium held in Kazimierz
Dolny, Poland, 23–27 May 2005. 2006 ISBN 1-4020-4565-4

136. A. Preumont: Mechatronics. Dynamics of Electromechanical and Piezoelectric Systems. 2006
ISBN 1-4020-4695-2

137. M.P. Bendsøe, N. Olhoff and O. Sigmund (eds.): IUTAM Symposium on Topological Design
Optimization of Structures, Machines and Materials. Status and Perspectives. 2006

ISBN 1-4020-4729-0
138. A. Klarbring: Models of Mechanics. 2006 ISBN 1-4020-4834-3
139. H.D. Bui: Fracture Mechanics. Inverse Problems and Solutions. 2006 ISBN 1-4020-4836-X
140. M. Pandey, W.-C. Xie and L. Xu (eds.): Advances in Engineering Structures, Mechanics

and Construction. Proceedings of an International Conference on Advances in Engineering
Structures, Mechanics & Construction, held in Waterloo, Ontario, Canada, May 14–17, 2006.
2006 ISBN 1-4020-4890-4

141. G.Q. Zhang, W.D. van Driel and X. J. Fan: Mechanics of Microelectronics. 2006
ISBN 1-4020-4934-X

142. Q.P. Sun and P. Tong (eds.): IUTAM Symposium on Size Effects on Material and Structural
Behavior at Micron- and Nano-Scales. Proceedings of the IUTAM Symposium held in Hong
Kong, China, 31 May–4 June, 2004. 2006 ISBN 1-4020-4945-5

143. A.P. Mouritz and A.G. Gibson: Fire Properties of Polymer Composite Materials. 2006
ISBN 1-4020-5355-X

144. Y.L. Bai, Q.S. Zheng and Y.G. Wei (eds.): IUTAM Symposium on Mechanical Behavior and
Micro-Mechanics of Nanostructured Materials. Proceedings of the IUTAM Symposium held

ISBN 1-4020-5623-0

springer.com

in Beijing, China, 27–30 June 2005. 2007
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